Solveeit Logo

Question

Question: The total number of positive integral solution of \[15 < {x_1} + {x_2} + {x_3} \leqslant 20\] is equ...

The total number of positive integral solution of 15<x1+x2+x32015 < {x_1} + {x_2} + {x_3} \leqslant 20 is equal to
A. 685
B. 785
C. 1125
D. None of these

Explanation

Solution

Here, we will first assume that the sum x1+x2+x3{x_1} + {x_2} + {x_3} is 16+r16 + r, where rr is 0,1,2,3,4. Then we will take y1=x1+1{y_1} = {x_1} + 1, y2+1=x2{y_2} + 1 = {x_2} and y3+1=x3{y_3} + 1 = {x_3} in the above equation after the required combinations, we will use the property of combinations, that is, nCr=nCnr{}^n{C_r} = {}^n{C_{n - r}}, where nn is the total numbers and rr is the required numbers. And then take the given conditions of the question, to find the required value.

Complete step by step answer:

We are given that the inequality is 15<x1+x2+x32015 < {x_1} + {x_2} + {x_3} \leqslant 20.
We have seen that the above the sum x1+x2+x3{x_1} + {x_2} + {x_3} is greater than 15 and less than or equal to 20.
Let us assume that the sum x1+x2+x3{x_1} + {x_2} + {x_3} is 16+r16 + r, where rr is 0,1,2,3,4.
Then we have x1+x2+x3=16+r{x_1} + {x_2} + {x_3} = 16 + r, where x10{x_1} \geqslant 0, x20{x_2} \geqslant 0, x30{x_3} \geqslant 0.
Putting y1=x1+1{y_1} = {x_1} + 1, y2+1=x2{y_2} + 1 = {x_2} and y3+1=x3{y_3} + 1 = {x_3} in the above equation, we get

y1+1+y2+1+y3+1=16+r y1+y2+y3+3=16+r y1+y2+y3=13+r  \Rightarrow {y_1} + 1 + {y_2} + 1 + {y_3} + 1 = 16 + r \\\ \Rightarrow {y_1} + {y_2} + {y_3} + 3 = 16 + r \\\ \Rightarrow {y_1} + {y_2} + {y_3} = 13 + r \\\

Now we will find the number of positive integral solutions using the combinations of y1+y2+y3=13+r{y_1} + {y_2} + {y_3} = 13 + r, where y10{y_1} \geqslant 0, y20{y_2} \geqslant 0, y30{y_3} \geqslant 0.
13+r+31C13+r\Rightarrow {}^{13 + r + 3 - 1}{C_{13 + r}}
Simplifying the above expression, we get

13+r+2C13+r 15+rC13+r  \Rightarrow {}^{13 + r + 2}{C_{13 + r}} \\\ \Rightarrow {}^{15 + r}{C_{13 + r}} \\\

Using the property of combinations, that is,nCr=nCnr{}^n{C_r} = {}^n{C_{n - r}}, where nn is the total numbers and rr is the required numbers in the above expression, we get

15+rC15+r13r 15+rC2  \Rightarrow {}^{15 + r}{C_{15 + r - 13 - r}} \\\ \Rightarrow {}^{15 + r}{C_2} \\\

Thus, the total number of solutions is r=0415+rC2\sum\limits_{r = 0}^4 {{}^{15 + r}{C_2}} .
Simplifying the obtained expression for the total number of solutions, we get

15+0C2+15+1C2+15+2C2+15+3C2+15+4C2 15C2+16C2+17C2+18C2+19C2  \Rightarrow {}^{15 + 0}{C_2} + {}^{15 + 1}{C_2} + {}^{15 + 2}{C_2} + {}^{15 + 3}{C_2} + {}^{15 + 4}{C_2} \\\ \Rightarrow {}^{15}{C_2} + {}^{16}{C_2} + {}^{17}{C_2} + {}^{18}{C_2} + {}^{19}{C_2} \\\

We know that the formula of solving combinations is nCr=n!r!(nr)!{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}, where nn is the number of items, and rr is the number of item being chosen at a time.
Calculating the combinations using the above formula in the above expression, we get

15!2!(152)!+16!2!(162)!+17!2!(172)!+18!2!(182)!+19!2!(192)! 15!2!13!+16!2!15!+17!2!15!+18!2!16!+19!2!17!  \Rightarrow \dfrac{{15!}}{{2!\left( {15 - 2} \right)!}} + \dfrac{{16!}}{{2!\left( {16 - 2} \right)!}} + \dfrac{{17!}}{{2!\left( {17 - 2} \right)!}} + \dfrac{{18!}}{{2!\left( {18 - 2} \right)!}} + \dfrac{{19!}}{{2!\left( {19 - 2} \right)!}} \\\ \Rightarrow \dfrac{{15!}}{{2!13!}} + \dfrac{{16!}}{{2!15!}} + \dfrac{{17!}}{{2!15!}} + \dfrac{{18!}}{{2!16!}} + \dfrac{{19!}}{{2!17!}} \\\

Simplifying the factorials in the above expression, we get
15×14×13!2!13!+16×15×14!2!14!+17×16×15!2!15!+18×17×16!2!16!+19×17×18!2!18!\Rightarrow \dfrac{{15 \times 14 \times 13!}}{{2!13!}} + \dfrac{{16 \times 15 \times 14!}}{{2!14!}} + \dfrac{{17 \times 16 \times 15!}}{{2!15!}} + \dfrac{{18 \times 17 \times 16!}}{{2!16!}} + \dfrac{{19 \times 17 \times 18!}}{{2!18!}}
We will now cancel the same factorials in numerators and denominators in the above expression, we get
15×142+16×152+17×162+18×172+19×182\Rightarrow \dfrac{{15 \times 14}}{2} + \dfrac{{16 \times 15}}{2} + \dfrac{{17 \times 16}}{2} + \dfrac{{18 \times 17}}{2} + \dfrac{{19 \times 18}}{2}
Taking 12\dfrac{1}{2} common in the above expression, we get

12(15×14+16×15+17×16+18×17+18×19) 12(210+240+272+306+342) 12(1370) 685  \Rightarrow \dfrac{1}{2}\left( {15 \times 14 + 16 \times 15 + 17 \times 16 + 18 \times 17 + 18 \times 19} \right) \\\ \Rightarrow \dfrac{1}{2}\left( {210 + 240 + 272 + 306 + 342} \right) \\\ \Rightarrow \dfrac{1}{2}\left( {1370} \right) \\\ \Rightarrow 685 \\\

Therefore, the total number of positive integral solution of 15<x1+x2+x32015 < {x_1} + {x_2} + {x_3} \leqslant 20 is equal to 685.
Hence, option A is correct.

Note: In solving these types of questions, you should be familiar with the concept of combinations, their simplification, and factorial distribution. While counting the possible combination factors in the above question, the factors could be chosen such that the factor on the left is always greater than the factor on the right, never less. This will help in rectifying the redundant cases. Some students mistakenly use the formula of permutations, nPr=n!(nr)!{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}} instead of the formula of combinations, so one should kept in mind such formulas while solving problems like this.