Solveeit Logo

Question

Question: The torque of the force \(\vec { r } = ( 3 \hat { i } + 2 \hat { j } + 3 \hat { k } )\)m about the o...

The torque of the force r=(3i^+2j^+3k^)\vec { r } = ( 3 \hat { i } + 2 \hat { j } + 3 \hat { k } )m about the origin be

A

6i^6j^+12k^6 \hat { i } - 6 \hat { j } + 12 \hat { k }

B

17i^6j^13k^17 \hat { i } - 6 \hat { j } - 13 \hat { k }

C

6i^+6j^12k^- 6 \hat { i } + 6 \hat { j } - 12 \hat { k }

D

17i^+6j^+13k^- 17 \hat { i } + 6 \hat { j } + 13 \hat { k }

Answer

17i^6j^13k^17 \hat { i } - 6 \hat { j } - 13 \hat { k }

Explanation

Solution

τ=r×F\vec { \tau } = \vec { r } \times \vec { F }

=i^j^k^323234= \left| \begin{array} { r r r } \hat { i } & \hat { j } & \hat { k } \\ 3 & 2 & 3 \\ 2 & - 3 & 4 \end{array} \right| =[(2×4)(3×3)]i^+[(2×3)(3×4)]j^+[(3×3)(2×2)]k^= [ ( 2 \times 4 ) - ( 3 \times - 3 ) ] \hat { i } + [ ( 2 \times 3 ) - ( 3 \times 4 ) ] \hat { j } + [ ( 3 \times - 3 ) - ( 2 \times 2 ) ] \hat { k } =17i^6j^13k^= 17 \hat { i } - 6 \hat { j } - 13 \hat { k }