Question
Physics Question on torque
The torque of force F=(2i^−3j^+4k^)N acting at a point r=(3i^+2j^+3k^)m about origin is
A
6i^−6j^+12k^N−m
B
−6i^+6j^−12k^N−m
C
17i^−6j^−13k^N−m
D
−17i^+6j^+13k^ N-m
Answer
−17i^+6j^+13k^ N-m
Explanation
Solution
The moment of force or torque about an axis is equal to the vector product of force (F) and perpendicular distance of line of action of force from the axis of rotation (r)
∴ τ=F×r
Given, F=2i^−3j^+4k^,
r=3i^+2j^+3k^
∴ τ=(2i^−3j^+4k^)×(3i^+2j^+3k^)
τ=i^ 2 3 j^−32k^43
⇒ τ=i^(−9−8)−j^(6−12)+k^(4+9)
⇒ τ=−17i^+6j^+13k^ .