Solveeit Logo

Question

Physics Question on torque

The torque of force F=(2i^3j^+4k^)N\vec{ F }=(2 \hat{ i }-3 \hat{ j }+4 \hat{ k }) N acting at a point r=(3i^+2j^+3k^)m\vec{ r }=(3 \hat{ i }+2 \hat{ j }+3 \hat{ k }) m about origin is

A

6i^6j^+12k^Nm6 \hat{ i }-6 \hat{ j }+12 \hat{ k } N- m

B

6i^+6j^12k^Nm-6 \hat{ i }+6 \hat{ j }-12 \hat{ k } N - m

C

17i^6j^13k^Nm17 \hat{ i }-6 \hat{ j }-13 \hat{ k } N - m

D

17i^+6j^+13k^-17 \hat{ i }+6 \hat{ j }+13 \hat{ k } N-m

Answer

17i^+6j^+13k^-17 \hat{ i }+6 \hat{ j }+13 \hat{ k } N-m

Explanation

Solution

The moment of force or torque about an axis is equal to the vector product of force (F)(F) and perpendicular distance of line of action of force from the axis of rotation (r)(r)
\therefore τ=F×r\tau =F\times r
Given, F=2i^3j^+4k^, \vec{F}=2\hat{i}-3\hat{j}+4\,\hat{k},\,
r=3i^+2j^+3k^r=3\,\hat{i}+2\hat{j}+3\hat{k}
\therefore τ=(2i^3j^+4k^)×(3i^+2j^+3k^)\tau =(2\,\hat{i}-3\hat{j}+4\hat{k})\times (3\,\hat{i}+2\hat{j}+3\hat{k})
τ=i^j^k^ 234 323 \tau =\left| \begin{matrix} {\hat{i}} & {\hat{j}} & {\hat{k}} \\\ 2 & -3 & 4 \\\ 3 & 2 & 3 \\\ \end{matrix} \right|
\Rightarrow τ=i^(98)j^(612)+k^(4+9)\tau =\hat{i}\,(-9-8)-\hat{j}\,(6-12)+\hat{k}\,(4+9)
\Rightarrow τ=17i^+6j^+13k^\tau =-17\,\hat{i}+6\hat{j}+13\,\hat{k} .