Solveeit Logo

Question

Question: The time taken for a certain volume of gas to diffuse through a small hole was 2 min. Under similar ...

The time taken for a certain volume of gas to diffuse through a small hole was 2 min. Under similar conditions an equal volume of oxygen took 5.65 minute to pass. The molecular mass of the gas is:
A. 32.0
B. 11.33
C. 4.0
D. 8.0

Explanation

Solution

This numerical is based on Graham’s law of diffusion. Use the formula, VAtAVBtB=MBMA\dfrac{\dfrac{{{\text{V}}_{\text{A}}}}{{{\text{t}}_{\text{A}}}}}{\dfrac{{{\text{V}}_{\text{B}}}}{{{\text{t}}_{\text{B}}}}}=\dfrac{\sqrt{{{\text{M}}_{\text{B}}}}}{\sqrt{{{\text{M}}_{\text{A}}}}}, to find the molecular mass of the unknown gas. See the conditions under which diffusion is taking place and apply the formula carefully by looking at the given terms. Find the molar mass of O2{{\text{O}}_{2}} and apply the formula.

Complete step by step answer:
According to Graham’s diffusion law, the rate of diffusion of any gas is proportional to the molar mass of the gas. Rate is inversely proportional to square root of molecular mass of the gas molecules. Mathematically, it is written as r1M\text{r}\propto \dfrac{1}{\sqrt{\text{M}}}.
When we deal in two gases to compare the rate of diffusion, the formula used is rArB=MBMA\dfrac{{{\text{r}}_{\text{A}}}}{{{\text{r}}_{\text{B}}}}=\dfrac{\sqrt{{{\text{M}}_{\text{B}}}}}{\sqrt{{{\text{M}}_{\text{A}}}}}, where rA{{\text{r}}_{\text{A}}} and rB{{\text{r}}_{\text{B}}} are the rates of diffusion of gas A and gas B respectively. MA{{\text{M}}_{\text{A}}} and MB{{\text{M}}_{\text{B}}} are the molecular masses of gas A and gas B.
Rate of any gas is measured as the amount of its volume diffused per unit time. The formula of Graham’s Diffusion law is modified as VAtAVBtB=MBMA\dfrac{\dfrac{{{\text{V}}_{\text{A}}}}{{{\text{t}}_{\text{A}}}}}{\dfrac{{{\text{V}}_{\text{B}}}}{{{\text{t}}_{\text{B}}}}}=\dfrac{\sqrt{{{\text{M}}_{\text{B}}}}}{\sqrt{{{\text{M}}_{\text{A}}}}}, where VA{{\text{V}}_{\text{A}}} and VB{{\text{V}}_{\text{B}}} are the volumes of gas A and gas B, tA{{\text{t}}_{\text{A}}} and tB{{\text{t}}_{\text{B}}} are the times taken by the gases for diffusion and MA{{\text{M}}_{\text{A}}} and MB{{\text{M}}_{\text{B}}} are the molecular masses of gas A and gas B.
Let us solve this numerical step-by-step using the formula;
Step (1): Find the molecular mass of oxygen gas.
Oxygen gas has the formula O2{{\text{O}}_{2}}. The mass of dioxygen is twice the molar mass of atomic oxygen. The molecular mass of oxygen gas is 2×162\times 16 or 32 grams.
Let the molecular mass of unknown gas be M.
Step (2): Write the given values.
We have VA=VB{{\text{V}}_{\text{A}}}={{\text{V}}_{\text{B}}}, equal volumes of gases is mentioned.
Time taken by gas A to diffuse is 2 min. So, tA{{\text{t}}_{\text{A}}}= 2 min and time taken by gas B (O2)\left( {{\text{O}}_{2}} \right) to diffuse is 5.65 min. So, tB{{\text{t}}_{\text{B}}}= 5.65 min.
The value of MA{{\text{M}}_{\text{A}}} be M and MB{{\text{M}}_{\text{B}}} be 32 grams.
Step (3): Apply the formula, VAtAVBtB=MBMA\dfrac{\dfrac{{{\text{V}}_{\text{A}}}}{{{\text{t}}_{\text{A}}}}}{\dfrac{{{\text{V}}_{\text{B}}}}{{{\text{t}}_{\text{B}}}}}=\dfrac{\sqrt{{{\text{M}}_{\text{B}}}}}{\sqrt{{{\text{M}}_{\text{A}}}}}.
By substituting the values, we get V2V5.65=32M\dfrac{\dfrac{\text{V}}{2}}{\dfrac{\text{V}}{5.65}}=\dfrac{\sqrt{32}}{\sqrt{\text{M}}}.
The expression can be modified as 5.652=32M\dfrac{5.65}{2}=\sqrt{\dfrac{32}{\text{M}}}.
The value of M will be 4.009 grams or 4 grams.

The molecular mass of the unknown gas is 4 grams, which is option ‘c’.

Note: The formula of formula of Graham’s Diffusion law is modified when pressures of gas A and gas B are not equal. The formula will be rArB=PA×MBPB×MA\dfrac{{{\text{r}}_{\text{A}}}}{{{\text{r}}_{\text{B}}}}=\dfrac{{{\text{P}}_{\text{A}}}\times \sqrt{{{\text{M}}_{\text{B}}}}}{{{\text{P}}_{\text{B}}}\times \sqrt{{{\text{M}}_{\text{A}}}}}, where rA{{\text{r}}_{\text{A}}} and rB{{\text{r}}_{\text{B}}} are the rate of diffusion of gas A and gas B, PA{{\text{P}}_{\text{A}}} and PB{{\text{P}}_{\text{B}}} are the pressures of gas A and gas B and MA{{\text{M}}_{\text{A}}} and MB{{\text{M}}_{\text{B}}} are the molecular masses of gas A and gas B.