Solveeit Logo

Question

Chemistry Question on Chemical Kinetics

The time required for 10% completion of a first order reaction at 298 K is equal to that required for its 25% completion at 308 K. If the value of A is 4×1010s14 \times 10^{10} s^{-1} . Calculate kk at 318 K and EaE_a.

Answer

For a first order reaction,
t=2.303klog aaxt =\frac { 2.303}{k} log\ \frac { a}{a-x}
At 298 KAt \ 298 \ K
t=2.303klog 10090t =\frac { 2.303}{k} log\ \frac { 100}{90}
t=0.1054Kt = \frac {0.1054}{K}
At 308 kAt\ 308 \ k
t=2.303klog 10075t' =\frac { 2.303}{k'} log\ \frac { 100}{75}
t=2.2877kt' = \frac {2.2877}{k'}
According to the question
t=tt= t'
0.1054K=2.2877k\frac {0.1054}{K} = \frac {2.2877}{k'}
kk=2.7296\frac {k'}{k }= 2.7296
From Arrhenius equation, we obtain
log k2k1=Ea2.303 R(T2T1T1T2)log \ \frac {k_2}{k_1} = \frac {E_a}{2.303\ R} (\frac {T_2-T_1}{T_1T_2})
Therefore, log (2.7296)=Ea2.303×8.314(308298298×308)log \ (2.7296) = \frac {Ea}{2.303\times8.314} (\frac {308-298}{298\times 308})
Ea=0.6021×2.303×8.314×298×308×log(2.7296)308298E_a = \frac {0.6021\times 2.303\times 8.314\times 298\times 308 \times log (2.7296)}{308-298}
Ea=76640.096 Jmol1Ea = 76640.096 \ J mol^{-1}
Ea=76.6 kJmol1Ea = 76.6\ kJ mol^{-1}
To calculate k at 318 K,To\ calculate \ k\ at \ 318 \ K,
It is given that,It\ is\ given\ that,
A=4×1010s1 and T=318 KA = 4\times 10^{10} s^{-1} \ and \ T = 318\ K
Again, from Arrhenius equation, we obtainAgain,\ from \ Arrhenius \ equation,\ we \ obtain
log k=log AEa2.303 RTlog \ k = log\ A- \frac {E_a}{2.303\ RT}
log k=log (4×1010)76.64×1032.303×8.314×318log\ k = log\ (4\times10^{10}) - \frac {76.64\times 10^3}{2.303\times 8.314×318}
log k=(0.6021+10)12.5876log \ k = (0.6021+10)-12.5876
log k=1.9855log \ k =-1.9855
Therefore,Therefore,
k=antilog (1.9855)k = antilog \ (-1.9855)
k=1.034×102s1k = 1.034\times10^{-2} s^{-1}