Solveeit Logo

Question

Physics Question on simple harmonic motion

The time period of oscillation of a simple pendulum of length L suspended from the roof of a vehicle, which moves without friction down an inclined plane of inclination α, is given by:

A

2πL(g cos⁡ α)2\pi\sqrt {\frac {L}{(g\ cos⁡\ α)}}

B

2πL(g sin ⁡α)2\pi\sqrt {\frac {L}{(g\ sin\ ⁡α)}}

C

2πLg2\pi\sqrt {\frac Lg}

D

2πL(g tan ⁡α)2π\sqrt {\frac {L}{(g\ tan\ ⁡α)}}

Answer

2πL(g cos⁡ α)2\pi\sqrt {\frac {L}{(g\ cos⁡\ α)}}

Explanation

Solution

geff=gˉaˉ|g_{eff}|=|\bar g−\bar a|
geff=g cos α⇒ g_{eff} = g\ cos\ α
The time period,
T=2πIgeff⇒ T=2\pi \sqrt {\frac {I}{g_{eff}}}

T=2πLg cos⁡ αT=2\pi\sqrt {\frac {L}{g\ cos⁡\ α}}

So, the correct option is (A): 2πL(g cos⁡ α)2\pi\sqrt {\frac {L}{(g\ cos⁡\ α)}}