Solveeit Logo

Question

Physics Question on Gravitation

The time period of a simple pendulum of length LL as measured in an elevator descending with acceleration g3\frac{g}{3} is

A

2π3L2g2\,\pi \sqrt{\frac{3L}{2g}}

B

π3Lg\pi \sqrt{\frac{3L}{g}}

C

2π(3Lg)2 \,\pi \sqrt{\left( \frac{3L}{g} \right)}

D

2π2Lg2 \,\pi \sqrt{\frac{2L}{g}}

Answer

2π3L2g2\,\pi \sqrt{\frac{3L}{2g}}

Explanation

Solution

The effective acceleration in a lift descending with acceleration g3\frac{g}{3} is geff=gg3=2g3g_{\text{eff}}=g-\frac{g}{3}=\frac{2 g}{3} Time period of simple pendulum T=2πLgeff\therefore T=2 \pi \sqrt{\frac{L}{g_{\text{eff}}}} =2πL2g/3=2 \pi \sqrt{\frac{L}{2 g / 3}} =2π3L2g=2 \pi \sqrt{\frac{3 L}{2 g}}