Solveeit Logo

Question

Question: The time period of a simple pendulum measured inside a stationary lift is found to be T. If the lift...

The time period of a simple pendulum measured inside a stationary lift is found to be T. If the lift starts accelerating upwards with an acceleration g/3, the time period is

A

T3T \sqrt { 3 }

B

T3/2T \sqrt { 3 } / 2

C

T/3T / \sqrt { 3 }

D

T/3T / 3

Answer

T3/2T \sqrt { 3 } / 2

Explanation

Solution

T=2πlgT = 2 \pi \sqrt { \frac { l } { g } } and T=2πl4g/3T ^ { \prime } = 2 \pi \sqrt { \frac { l } { 4 g / 3 } }

[Asg=g+a=g+g3=4g3\left[ A s g ^ { \prime } = g + a = g + \frac { g } { 3 } = \frac { 4 g } { 3 } \right. ]

T=T ^ { \prime } = 32T\frac { \sqrt { 3 } } { 2 } T