Solveeit Logo

Question

Question: The time period of a freely suspended magnet is 4 seconds. If it is broken in length into two equal ...

The time period of a freely suspended magnet is 4 seconds. If it is broken in length into two equal parts and one part is suspended in the same way, then its time period will be

A

4 sec

B

2 sec

C

0.5 sec

D

0.25 sec

Answer

2 sec

Explanation

Solution

T=2πIMBH=4secT = 2 \pi \sqrt { \frac { I } { M B _ { H } } } = 4 \mathrm { sec }

When magnet is cut into two equal halves, then New magnetic moment M=M2M ^ { \prime } = \frac { M } { 2 }

New moment of inertia I=(w/2)(l/2)212=18wl212I ^ { \prime } = \frac { ( \mathrm { w } / 2 ) ( l / 2 ) ^ { 2 } } { 12 } = \frac { 1 } { 8 } \cdot \frac { \mathrm { w } l ^ { 2 } } { 12 }

Where w is the initial mass of the magnet

But I=wl212;I=I8I = \frac { \mathrm { w } l ^ { 2 } } { 12 } ; \therefore I ^ { \prime } = \frac { I } { 8 }

T=2πIMBHT ^ { \prime } = 2 \pi \sqrt { \frac { I ^ { \prime } } { M ^ { \prime } B _ { H } } }

=2πI/8(M/2)BH=122πIMH= 2 \pi \sqrt { \frac { I / 8 } { ( M / 2 ) B _ { H } } } = \frac { 1 } { 2 } 2 \pi \sqrt { \frac { I } { M _ { H } } } =12×T=12×4=2sec= \frac { 1 } { 2 } \times T = \frac { 1 } { 2 } \times 4 = 2 \mathrm { sec }

T=2πIMBH=4secT = 2 \pi \sqrt { \frac { I } { M B _ { H } } } = 4 \mathrm { sec }