Solveeit Logo

Question

Question: The time dependence of physical quantity P is given by P = P<sub>0</sub>\(e^{- \alpha t^{2} + \beta ...

The time dependence of physical quantity P is given by P = P0eαt2+βt+γe^{- \alpha t^{2} + \beta t + \gamma}, where α, β, γ are constants and their dimensions are given by (where t is time) –

A

M0 L0 T -2M0 L0 T -1M0 L0 T0M^{0}\text{ }\text{L}^{0}\text{ T}\text{ }^{\text{-2}}\text{, }\text{M}^{0}\text{ }\text{L}^{0}\text{ }\text{T}^{\text{ -1}}\text{, }\text{M}^{0}\text{ }\text{L}^{0}\text{ }\text{T}^{0}

B

M0 L-1,T -2M0 L0 T -1M0 L0 TM^{0}\text{ }\text{L}^{\text{-1}}\text{,T}\text{ }^{\text{-2}}\text{, }\text{M}^{0}\text{ }\text{L}^{0}\text{ T}\text{ }^{\text{-1}}\text{, }\text{M}^{0}\text{ }\text{L}^{0}\text{ T}

C

M0 L0 T -1, M L T -2M0 L0 T -1M^{0}\text{ }\text{L}^{0}\text{ T}\text{ }^{\text{-1}}\text{, M L T}\text{ }^{\text{-2}}\text{, }\text{M}^{0}\text{ }\text{L}^{0}\text{ T}\text{ }^{\text{-1}}

D

M, L, T, M L T0M0 L0 T0\text{M, L, T, M L }\text{T}^{0}\text{, }\text{M}^{0}\text{ }\text{L}^{0}\text{ }\text{T}^{0}

Answer

M0 L0 T -2M0 L0 T -1M0 L0 T0M^{0}\text{ }\text{L}^{0}\text{ T}\text{ }^{\text{-2}}\text{, }\text{M}^{0}\text{ }\text{L}^{0}\text{ }\text{T}^{\text{ -1}}\text{, }\text{M}^{0}\text{ }\text{L}^{0}\text{ }\text{T}^{0}

Explanation

Solution

[– α t2 + βt + γ] = 1

[α] = T –2, [β] = T –1, [γ] = 1