Solveeit Logo

Question

Question: The threshold frequency for a given metal is 3.6 × 10¹⁴ Hz. If monochromatic radiations of frequency...

The threshold frequency for a given metal is 3.6 × 10¹⁴ Hz. If monochromatic radiations of frequency 6.8 × 10¹⁴ Hz are incident on this metal, find the cut-off potential for the photoelectrons.

Answer

1.326 V

Explanation

Solution

The maximum kinetic energy (KmaxK_{max}) of photoelectrons is given by Einstein's photoelectric equation: Kmax=hνϕK_{max} = h \nu - \phi, where hh is Planck's constant, ν\nu is the frequency of incident radiation, and ϕ\phi is the work function. The work function is related to the threshold frequency (ν0\nu_0) by ϕ=hν0\phi = h \nu_0. Thus, Kmax=hνhν0=h(νν0)K_{max} = h \nu - h \nu_0 = h (\nu - \nu_0).

The cut-off potential (V0V_0) is related to KmaxK_{max} by eV0=Kmaxe V_0 = K_{max}. Equating the two expressions for KmaxK_{max}: eV0=h(νν0)e V_0 = h (\nu - \nu_0)

Solving for the cut-off potential: V0=h(νν0)eV_0 = \frac{h (\nu - \nu_0)}{e}

Given values:

  • Threshold frequency, ν0=3.6×1014\nu_0 = 3.6 \times 10^{14} Hz
  • Frequency of incident radiation, ν=6.8×1014\nu = 6.8 \times 10^{14} Hz
  • Planck's constant, h=6.63×1034h = 6.63 \times 10^{-34} J s
  • Charge of an electron, e=1.6×1019e = 1.6 \times 10^{-19} C

Calculate the difference in frequencies: νν0=(6.8×1014 Hz)(3.6×1014 Hz)=3.2×1014 Hz\nu - \nu_0 = (6.8 \times 10^{14} \text{ Hz}) - (3.6 \times 10^{14} \text{ Hz}) = 3.2 \times 10^{14} \text{ Hz}.

Substitute the values into the formula for V0V_0: V0=(6.63×1034 J s)×(3.2×1014 Hz)1.6×1019 CV_0 = \frac{(6.63 \times 10^{-34} \text{ J s}) \times (3.2 \times 10^{14} \text{ Hz})}{1.6 \times 10^{-19} \text{ C}} V0=21.216×1020 J1.6×1019 CV_0 = \frac{21.216 \times 10^{-20} \text{ J}}{1.6 \times 10^{-19} \text{ C}} V0=1.326 VV_0 = 1.326 \text{ V}