Solveeit Logo

Question

Question: The three vertices of a parallelogram A(3,-4), B(-1,-3), and C(-6,2). Find the coordinate of vertex ...

The three vertices of a parallelogram A(3,-4), B(-1,-3), and C(-6,2). Find the coordinate of vertex D and find the area of ABCD.

Explanation

Solution

Using the property of parallelogram i.e. diagonal of a parallelogram bisect each other we will find the coordinate of the intersection of diagonal using mid-point formula i.e.
If (l,m) is the mid-point of (x,y) and (p,q) then
then, l=x+p2l = \dfrac{{x + p}}{2}
and m=y+q2m = \dfrac{{y + q}}{2}
Further, we will find the coordinate of D having the same procedure.
If in triangle PQR, P(x1,y1)P({x_1},{y_1}),Q(x2,y2)Q({x_2},{y_2}) and R(x3,y3)R({x_3},{y_3})
Then the area of triangle PQR=12[x1(y2y3)+x2(y3y1)+x3(y1y2)] = \dfrac{1}{2}\left[ {{x_1}({y_2} - {y_3}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2})} \right]

Complete step-by-step answer:
Given data: A(3,-4), B(-1,-3), and C(-6,2)

let the coordinate of D be (c,d) and H, the intersection point of diagonal be
(a,b)
We know that H is the mid-point of AC
Therefore, using the mid-point formula on AC,
i.e. a=6+32a = \dfrac{{ - 6 + 3}}{2}
a=32\Rightarrow a = \dfrac{{ - 3}}{2}
And, b=242b = \dfrac{{2 - 4}}{2}
b=1  \therefore b = - 1\;
Therefore, the coordinate of H(32,1)H(\dfrac{{ - 3}}{2}, - 1)
Since H is also the mid-point of BD, using the mid-point formula we get,
i.e. a=1+c2a = \dfrac{{ - 1 + c}}{2}
on substituting the value of a,
i.e. 32  =  1+c2    \dfrac{{ - 3}}{2}\; = \;\dfrac{{ - 1 + c}}{2}{\text{ }}\;{\text{ }}
  3=1+c  \Rightarrow \; - 3 = - 1 + c\;
c=2  \therefore c = - 2\;
And, b=3+d2b = \dfrac{{3 + d}}{2}
on substituting the value of b, we get
1  =3+d2\Rightarrow - 1\; = \dfrac{{ - 3 + d}}{2}
2  =3+d\Rightarrow - 2\; = - 3 + d
d=1\therefore d = 1
Therefore, the coordinate of D(2,1)D( - 2,1)
Since the diagonal of a parallelogram divides the parallelogram into two equal parts. We can say that area of parallelogram ABCD is twice the area of triangle ABC
Therefore, the area of triangle ABC=12[x1(y2y3)+x2(y3y1)+x3(y1y2)] = \dfrac{1}{2}\left[ {{x_1}({y_2} - {y_3}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2})} \right]
Substituting the value of vertices of triangle ABC.
=12[3(32)1(2+4)6(4+3)]= \dfrac{1}{2}\left[ {3( - 3 - 2) - 1(2 + 4) - 6( - 4 + 3)} \right]
=12[156+6]= \dfrac{1}{2}\left[ { - 15 - 6 + 6} \right]
=152= \dfrac{{ - 15}}{2}
But the area can not be negative hence taking the positive value
area of triangle ABC = 152{\text{ = }}\dfrac{{{\text{15}}}}{{\text{2}}}
Therefore,
area of parallelogram ABCD=2(area of triangle ABC)
=2(152)= 2(\dfrac{{15}}{2})
=15= 15 sq. units

Additional information: Opposite sides of a parallelogram are equal and parallel to each other, and corresponding angles are supplementary to each other.

Note: We can also find the area of the parallelogram using the formula.
Area of parallelogram ABCD=(base)(height)
Base(BA)=(3+1)2+(4+3)2= \sqrt {{{(3 + 1)}^2} + {{( - 4 + 3)}^2}}
=16+1= \sqrt {16 + 1}
=17= \sqrt {17}
Using a two-point form of the equation of line BA would be
i.e.(y+4)=(3+413)(x3)(y + 4) = \left( {\dfrac{{ - 3 + 4}}{{ - 1 - 3}}} \right)(x - 3)
y+4=14(x3)\Rightarrow y + 4 = \dfrac{1}{{ - 4}}(x - 3)
4y16=x3\Rightarrow - 4y - 16 = x - 3
x+4y+13=0\Rightarrow x + 4y + 13 = 0
The height of the parallelogram would be the perpendicular distance of D(-2,1) from BA i.e.
height =2+4(1)+1312+42 = \dfrac{{| - 2 + 4(1) + 13|}}{{\sqrt {{1^2} + {4^2}} }}
=1517= \dfrac{{15}}{{\sqrt {17} }}
Therefore, the area of parallelogram ABCD=(base)(height)
=(17)(1517)= (\sqrt {17} )(\dfrac{{15}}{{\sqrt {17} }})
=15= 15
Therefore, area of parallelogram= 1515 sq. units