Solveeit Logo

Question

Question: The three vectors \(\overset{\rightarrow}{A} = 3\widehat{i} - 2\widehat{j} + \widehat{k},\overset{\r...

The three vectors A=3i^2j^+k^,B=i^3j^+5k^\overset{\rightarrow}{A} = 3\widehat{i} - 2\widehat{j} + \widehat{k},\overset{\rightarrow}{B} = \widehat{i} - 3\widehat{j} + 5\widehat{k} and

C=2i^+j^4k^\overset{\rightarrow}{C} = 2\widehat{i} + \widehat{j} - 4\widehat{k} form

A

An equilateral triangle

B

Isosceles triangle

C

A right angled triangle

D

No triangle

Answer

A right angled triangle

Explanation

Solution

A=3i^2j^+k^\overrightarrow{A} = 3\widehat{i} - 2\widehat{j} + \widehat{k}, B=i^3j^+5k^\overrightarrow{B} = \widehat{i} - 3\widehat{j} + 5\widehat{k}, C=2i^j^+4k^\overrightarrow{C} = 2\widehat{i} - \widehat{j} + 4\widehat{k}

A=32+(2)2+12=9+4+1=14|\overrightarrow{A}| = \sqrt{3^{2} + ( - 2)^{2} + 1^{2}} = \sqrt{9 + 4 + 1} = \sqrt{14}

B=12+(3)2+52=1+9+25=35|\overrightarrow{B}| = \sqrt{1^{2} + ( - 3)^{2} + 5^{2}} = \sqrt{1 + 9 + 25} = \sqrt{35}

A=22+12+(4)2=4+1+16=21|\overrightarrow{A}| = \sqrt{2^{2} + 1^{2} + ( - 4)^{2}} = \sqrt{4 + 1 + 16} = \sqrt{21}

As B=A2+C2B = \sqrt{A^{2} + C^{2}}therefore ABC will be right angled triangle.