Solveeit Logo

Question

Question: The three sides of a trapezium are equal each being 6'' long. The area of the trapezium when it is m...

The three sides of a trapezium are equal each being 6'' long. The area of the trapezium when it is maximum is

A

27sq. inch

B

21sq. inch

C

27327 \sqrt { 3 }sq.inch

D

) None of these

Answer

27327 \sqrt { 3 }sq.inch

Explanation

Solution

Area of trapezium ABCD

S=12[6+(6+2×6cosθ)]×6sinθS = \frac { 1 } { 2 } [ 6 + ( 6 + 2 \times 6 \cos \theta ) ] \times 6 \sin \theta

= 36(sinθ+sinθcosθ)( \sin \theta + \sin \theta \cos \theta )

= 36sinθ+18sin2θ36 \sin \theta + 18 \sin 2 \theta

dsdθ=36cosθ+36cos2θ=0\frac { d s } { d \theta } = 36 \cos \theta + 36 \cos 2 \theta = 0

= 36(cosθ+cos2θ)=036 ( \cos \theta + \cos 2 \theta ) = 0

cosθ+2cos2θ1=0\cos \theta + 2 \cos ^ { 2 } \theta - 1 = 0

2cos2θ+cosθ1=02 \cos ^ { 2 } \theta + \cos \theta - 1 = 0

cosθ=1\cos \theta = - 1or cosθ=12\cos \theta = \frac { 1 } { 2 }

θ=π\theta = \pi or π3\frac { \pi } { 3 } θπ\theta \neq \pi

SmaxS _ { \max } at θ=π3\theta = \frac { \pi } { 3 }

36sinπ3+18sin2π336 \sin \frac { \pi } { 3 } + 18 \sin \frac { 2 \pi } { 3 }

= 27327 \sqrt { 3 } sq.inch.

So 'C' is correct