Solveeit Logo

Question

Mathematics Question on Geometric Progression

The three sides of a right-angled triangle are in G.P (geometric progression). If the two acute angles be α\alpha and β\beta, then tan α\alpha and tan β\beta are

A

5+12and512\frac{\sqrt{5}+1}{2}\,and\, \frac{\sqrt{5}-1}{2}

B

5+12and512\sqrt{\frac{\sqrt{5}+1}{2}}\,and\, \sqrt{\frac{\sqrt{5}-1}{2}}

C

5and15\sqrt{5}\,and\, \frac{1}{\sqrt{5}}

D

52and25\frac{\sqrt{5}}{2}\,and\, \frac{2}{\sqrt{5}}

Answer

5+12and512\sqrt{\frac{\sqrt{5}+1}{2}}\,and\, \sqrt{\frac{\sqrt{5}-1}{2}}

Explanation

Solution

(ar)2+a2=a2r2(r>1),a0r4r21=0r2=1±52r=±5+12\left(\frac{a}{r}\right)^{2} +a^{2} = a^{2}r^{2} \,\left(r > 1\right), \,a \ne 0\,\Rightarrow\,r^{4}-r^{2}-1 = 0\,\Rightarrow r^{2} = \frac{1\pm\sqrt{5}}{2}\,\Rightarrow r = \pm\sqrt{\frac{\sqrt{5}+1}{2}}
r=5+12(r>1),1r=512(α+β=90tanα=cotβ=1tanβ)\Rightarrow r = \sqrt{\frac{\sqrt{5}+1}{2}} \left(r > 1\right), \frac{1}{r} = \sqrt{\frac{\sqrt{5}-1}{2}}\left(\because\,\alpha+\beta = 90^{\circ} \Rightarrow tan\,\alpha = cot\,\beta = \frac{1}{tan\,\beta} \right)