Question
Mathematics Question on Determinants
The three distinct points A(at12,2at1),B(at22,2at2) and C(0,a) (where a is a real number) are collinear, if
A
t1t2=−1
B
t1t2=1
C
2t1t2=t1+t2
D
t1+t2=a
Answer
2t1t2=t1+t2
Explanation
Solution
If there points A(at12,2at1),B(at22,2at2) and C(0,a), collinear, if
at12 at22 0 2at12at2a111=0
Use operation; R2→R2−R1,R3→R3−R1 at12 a(t22−t12) −at12 2at12a(t2−t1)a−2at1100=0
Expand with respect to C3
a(t2−t1)(t2+t1)(a−2at1)
+2a2t12(t2−t1)=0
⇒ a(t2−t1)(t1+t2)(a−2at1)+2at12=0
⇒ a({{t}_{2}}-{{t}_{1}})\,\\{a{{t}_{1}}+a{{t}_{2}}-2at_{1}^{2}
-2a{{t}_{1}}{{t}_{2}}+2at_{1}^{2}\\}=0
⇒ a(t2−t1)(at1+at2−2at1t2)=0
⇒ a2(t2−t1)(t1+t2−2t1+t2)=0
⇒ t2−t1=0
or t1+t2−2t1t2=0
⇒ t1=t2
or t1=t2