Solveeit Logo

Question

Physics Question on Electrostatics

The three charges q/2, q and q/2 are placed at the corners A , B and C of a square of side ‘ a ’ as shown in figure. The magnitude of electric field (E) at the corner D of the square is

Fig.

A

q4π0a2(12+12)\frac{q}{4π∈_0a_2} ( \frac{1}{\sqrt2} + \frac{1}{2})

B

q4π0a2(1+12)\frac{q}{4π∈_0a_2} ( 1 + \frac{1}{\sqrt2} )

C

q4π0a2(112)\frac{q}{4π∈_0a_2} ( 1 - \frac{1}{\sqrt2} )

D

q4π0a2(1212)\frac{q}{4π∈_0a_2} ( \frac{1}{\sqrt2} - \frac{1}{2} )

Answer

q4π0a2(12+12)\frac{q}{4π∈_0a_2} ( \frac{1}{\sqrt2} + \frac{1}{2})

Explanation

Solution

The correct answer is (A) : q4π0a2(12+12)\frac{q}{4π∈_0a_2} ( \frac{1}{\sqrt2} + \frac{1}{2})
E0=kq/2a22+kq(a2)2| E_0 | = \frac{kq/2}{a²} \sqrt2 + \frac{kq}{( a\sqrt2 )²}
=kq2a2+kq2a2= \frac{kq}{\sqrt2a²} + \frac{kq}{2a²}
=kqa2(12+12),k=14π0=\frac{kq}{a²} ( \frac{1}{\sqrt2} + \frac{1}{2} ), k = \frac{1}{4π∈_0}