Solveeit Logo

Question

Question: The third term in the expansion of $\left(\sqrt[5]{x}-\frac{4}{\sqrt[3]{y^{2}}}\right)^{7}$ is equal...

The third term in the expansion of (x54y23)7\left(\sqrt[5]{x}-\frac{4}{\sqrt[3]{y^{2}}}\right)^{7} is equal to

A

2240x4/5y2-\frac{2240 x^{4 / 5}}{y^{2}}

B

336xy4/3\frac{336 x}{y^{4 / 3}}

C

2240x4/5y2\frac{2240 x^{4 / 5}}{y^{2}}

D

336x3/5y5/3-\frac{336 x^{3 / 5}}{y^{5 / 3}}

Answer

336xy4/3\frac{336 x}{y^{4 / 3}}

Explanation

Solution

The general term in the binomial expansion of (a+b)n(a+b)^n is Tk+1=(nk)ankbkT_{k+1} = \binom{n}{k} a^{n-k} b^k. For the given expression, a=x1/5a=x^{1/5}, b=4y2/3b=-4y^{-2/3}, and n=7n=7. For the third term, k=2k=2. Thus, T3=(72)(x1/5)72(4y2/3)2=21x16y4/3=336xy4/3T_3 = \binom{7}{2}(x^{1/5})^{7-2}(-4y^{-2/3})^2 = 21 \cdot x \cdot 16y^{-4/3} = 336xy^{-4/3}.