Solveeit Logo

Question

Question: The terms of an arithmetic sequence add up to 715. The first term of sequence is increased by 1, sec...

The terms of an arithmetic sequence add up to 715. The first term of sequence is increased by 1, second term is increased by 3, and soon, in general, the kth{{k}^{th}}term is increased by kth{{k}^{th}}odd positive integer. The terms of new sequence add up to 836. If a1{{a}_{1}}and an{{a}_{n}}denotes the first and last term of the original sequence, then the value of (a1+an8)\left( \dfrac{{{a}_{1}}+{{a}_{n}}}{8} \right)is

Explanation

Solution

We solve this problem by taking the sum of original sequence as Sn{{S}_{n}}and then we add sum of first n'n'odd positive numbers to Sn{{S}_{n}}we get the sum of changed sequence as Sn{{S}_{n}}^{\prime }because we added kth{{k}^{th}}odd positive number to kth{{k}^{th}}term. We use the result of sum of first n'n'odd positive numbers as k=1n(2k1)=n2\sum\limits_{k=1}^{n}{\left( 2k-1 \right)}={{n}^{2}}to find number of terms. Then, finally we use sum of n'n'in arithmetic progression as
Sn=n2[a1+an]{{S}_{n}}=\dfrac{n}{2}\left[ {{a}_{1}}+{{a}_{n}} \right]to get the required result.

Complete step-by-step answer:
Let us assume that the sum of original sequence as
Sn=715{{S}_{n}}=715
Let us assume that after adding kth{{k}^{th}}odd positive number to kth{{k}^{th}}term we get
Sn=836{{S}_{n}}^{\prime }=836
We are given that in each term of original sequence kth{{k}^{th}}odd positive number to kth{{k}^{th}}term.
So, by converting this statement to sum of terms we get
Sn=Sn+(1+3+5+.......+(2n1))\Rightarrow {{S}_{n}}^{\prime }={{S}_{n}}+\left( 1+3+5+.......+\left( 2n-1 \right) \right)
We know that the sum of first n'n'odd positive numbers as k=1n(2k1)=n2\sum\limits_{k=1}^{n}{\left( 2k-1 \right)}={{n}^{2}}
By using this result in above equation we get
Sn=Sn+n2\Rightarrow {{S}_{n}}^{\prime }={{S}_{n}}+{{n}^{2}}
By substituting the required values in above equation we get

& \Rightarrow 836=715+{{n}^{2}} \\\ & \Rightarrow n=\sqrt{121} \\\ & \Rightarrow n=11 \\\ \end{aligned}$$ So, the number of terms in the sequence is 11. We know that if $${{a}_{1}}$$and $${{a}_{n}}$$denotes the first and last term of the sequence then the sum of sequence is given as $${{S}_{n}}=\dfrac{n}{2}\left[ {{a}_{1}}+{{a}_{n}} \right]$$ By using this formula and substituting the required values we get $$\begin{aligned} & \Rightarrow 715=\dfrac{11}{2}\left( {{a}_{1}}+{{a}_{n}} \right) \\\ & \Rightarrow \left( {{a}_{1}}+{{a}_{n}} \right)=65\times 2=130 \\\ \end{aligned}$$ Now by dividing the both sides with 8 we get $$\begin{aligned} & \Rightarrow \left( \dfrac{{{a}_{1}}+{{a}_{n}}}{8} \right)=\dfrac{130}{8} \\\ & \Rightarrow \left( \dfrac{{{a}_{1}}+{{a}_{n}}}{8} \right)=16.25 \\\ \end{aligned}$$ Therefore, the value of $$\left( \dfrac{{{a}_{1}}+{{a}_{n}}}{8} \right)$$is 16.25. **Note:** We can find the value of $$\left( \dfrac{{{a}_{1}}+{{a}_{n}}}{8} \right)$$from the second sequence. In the second sequence the first and last terms are given as $$\begin{aligned} & {{a}_{1}}^{\prime }={{a}_{1}}+1 \\\ & {{a}_{n}}^{\prime }={{a}_{n}}+\left( 2n+1 \right) \\\ \end{aligned}$$ By using the sum of terms in arithmetic progression we can write $$\Rightarrow {{S}_{n}}^{\prime }=\dfrac{n}{2}\left( {{a}_{1}}^{\prime }+{{a}_{n}}^{\prime } \right)$$ By substituting the required values in above equation we get $$\begin{aligned} & \Rightarrow 836=\dfrac{11}{2}\left( {{a}_{1}}+1+{{a}_{n}}+\left( 2\times 11-1 \right) \right) \\\ & \Rightarrow 76\times 2={{a}_{1}}+{{a}_{n}}+22 \\\ & \Rightarrow {{a}_{1}}+{{a}_{n}}=130 \\\ \end{aligned}$$ Now by dividing the both sides with 8 we get $$\begin{aligned} & \Rightarrow \left( \dfrac{{{a}_{1}}+{{a}_{n}}}{8} \right)=\dfrac{130}{8} \\\ & \Rightarrow \left( \dfrac{{{a}_{1}}+{{a}_{n}}}{8} \right)=16.25 \\\ \end{aligned}$$ Therefore, the value of $$\left( \dfrac{{{a}_{1}}+{{a}_{n}}}{8} \right)$$is 16.25.