Solveeit Logo

Question

Question: The terms given by \({\log _3}2,{\log _6}2,{\log _{12}}2\) are in: \(\left( 1 \right)\) A.P. \(\...

The terms given by log32,log62,log122{\log _3}2,{\log _6}2,{\log _{12}}2 are in:
(1)\left( 1 \right) A.P.
(2)\left( 2 \right) G.P.
(3)\left( 3 \right) H.P.
(4)\left( 4 \right) None of these

Explanation

Solution

In order to solve this question, we will make the base of the algorithm the same. Then,we will substitute the value of each term in the condition of the given series in the option and will simplify it by using the appropriate mathematical operation. After that, we will check if it satisfies the condition or not.

Complete step-by-step solution:
Since, the given series is log32,log62,log122{\log _3}2,{\log _6}2,{\log _{12}}2.
Now, we will make the base the same. To make the base same, we will use the formula logab=1logba{\log _a}b = \dfrac{1}{{{{\log }_b}a}} as:
log32=1log23\Rightarrow {\log _3}2 = \dfrac{1}{{{{\log }_2}3}}
log62=1log26\Rightarrow {\log _6}2 = \dfrac{1}{{{{\log }_2}6}}
log122=1log212\Rightarrow {\log _{12}}2 = \dfrac{1}{{{{\log }_2}12}}
Here, the series will be 1log23,1log26,1log212\dfrac{1}{{{{\log }_2}3}},\dfrac{1}{{{{\log }_2}6}},\dfrac{1}{{{{\log }_2}12}}.
Now, we will do this series by using all the conditions of given options one by one.
Option A
If a series a,b,ca,b,c in A.P.:
b=a+c2\Rightarrow b = \dfrac{{a + c}}{2}
Now, we will substitute 1log23\dfrac{1}{{{{\log }_2}3}} for aa, 1log26\dfrac{1}{{{{\log }_2}6}} for bb and 1log212\dfrac{1}{{{{\log }_2}12}} for cc in the above condition of A.P.
1log26=1log23+1log2122\Rightarrow \dfrac{1}{{{{\log }_2}6}} = \dfrac{{\dfrac{1}{{{{\log }_2}3}} + \dfrac{1}{{{{\log }_2}12}}}}{2}
Here, we will use the method of addition of fraction to simplify the above step as,
1log26=log212+log23log23log2122\Rightarrow \dfrac{1}{{{{\log }_2}6}} = \dfrac{{\dfrac{{{{\log }_2}12 + {{\log }_2}3}}{{{{\log }_2}3 \cdot {{\log }_2}12}}}}{2}
Now, we will use the law of algorithmic to solve above expression as,
1log26=log21232log23log212 1log26=log2362log23log212 1log26=log2622log23log212 1log26=2log262log23log212 \begin{aligned} &\Rightarrow \dfrac{1}{{{{\log }_2}6}} = \dfrac{{{{\log }_2}12 \cdot 3}}{{2{{\log }_2}3 \cdot {{\log }_2}12}} \\\ &\Rightarrow \dfrac{1}{{{{\log }_2}6}} = \dfrac{{{{\log }_2}36}}{{2{{\log }_2}3 \cdot {{\log }_2}12}} \\\ &\Rightarrow \dfrac{1}{{{{\log }_2}6}} = \dfrac{{{{\log }_2}{6^2}}}{{2{{\log }_2}3 \cdot {{\log }_2}12}} \\\ &\Rightarrow \dfrac{1}{{{{\log }_2}6}} = \dfrac{{2{{\log }_2}6}}{{2{{\log }_2}3 \cdot {{\log }_2}12}} \\\ \end{aligned}
Here, we will cancel out the term 22 from the numerator and denominator of the right side of the obtained expression.
1log26=log26log23log212\Rightarrow \dfrac{1}{{{{\log }_2}6}} = \dfrac{{{{\log }_2}6}}{{{{\log }_2}3 \cdot {{\log }_2}12}}
Since, L.H.S.R.H.S.L.H.S. \ne R.H.S. So, the series is not in A.P.
Option B
If a series a,b,ca,b,c in G.P.:
b2=ac\Rightarrow {b^2} = ac
Now, we will substitute 1log23\dfrac{1}{{{{\log }_2}3}} for aa, 1log26\dfrac{1}{{{{\log }_2}6}} for bb and 1log212\dfrac{1}{{{{\log }_2}12}} for cc in the above condition of G.P.
(1log26)2=1log231log212\Rightarrow {\left( {\dfrac{1}{{{{\log }_2}6}}} \right)^2} = \dfrac{1}{{{{\log }_2}3}} \cdot \dfrac{1}{{{{\log }_2}12}}
Now, we will use the law of algorithmic to solve above expression as,
1log262=1log23log212 12log26=1log23log2(43) 12log2(23)=1log23(log24+log23) 12(log22+log23)=1log23(log24+log23) \begin{aligned} &\Rightarrow \dfrac{1}{{{{\log }_2}{6^2}}} = \dfrac{1}{{{{\log }_2}3 \cdot {{\log }_2}12}} \\\ &\Rightarrow \dfrac{1}{{2{{\log }_2}6}} = \dfrac{1}{{{{\log }_2}3 \cdot {{\log }_2}\left( {4 \cdot 3} \right)}} \\\ &\Rightarrow \dfrac{1}{{2{{\log }_2}\left( {2 \cdot 3} \right)}} = \dfrac{1}{{{{\log }_2}3\left( {{{\log }_2}4 + {{\log }_2}3} \right)}} \\\ &\Rightarrow \dfrac{1}{{2\left( {{{\log }_2}2 + {{\log }_2}3} \right)}} = \dfrac{1}{{{{\log }_2}3\left( {{{\log }_2}4 + {{\log }_2}3} \right)}} \\\ \end{aligned}
Since, L.H.S.R.H.S.L.H.S. \ne R.H.S. So, the series is not in G.P.
Option C
If a series a,b,ca,b,c in H.P.:
b=2aca+c\Rightarrow b = \dfrac{{2ac}}{{a + c}}
Now, we will substitute 1log23\dfrac{1}{{{{\log }_2}3}} for aa, 1log26\dfrac{1}{{{{\log }_2}6}} for bb and 1log212\dfrac{1}{{{{\log }_2}12}} for cc in the above condition of H.P.
1log26=21log231log2121log23+1log212\Rightarrow \dfrac{1}{{{{\log }_2}6}} = \dfrac{{2 \cdot \dfrac{1}{{{{\log }_2}3}} \cdot \dfrac{1}{{{{\log }_2}12}}}}{{\dfrac{1}{{{{\log }_2}3}} + \dfrac{1}{{{{\log }_2}12}}}}
Here, we will use the method of addition of fraction to simplify the above step as,
1log26=21log23log212log212+log23log23log212\Rightarrow \dfrac{1}{{{{\log }_2}6}} = \dfrac{{2 \cdot \dfrac{1}{{{{\log }_2}3 \cdot {{\log }_2}12}}}}{{\dfrac{{{{\log }_2}12 + {{\log }_2}3}}{{{{\log }_2}3 \cdot {{\log }_2}12}}}}
After that, cancel out the equal terms.
1log26=2log212+log23\Rightarrow \dfrac{1}{{{{\log }_2}6}} = \dfrac{2}{{{{\log }_2}12 + {{\log }_2}3}}
Now, we will use the law of algorithmic to solve above expression as,
1log26=2log2(123) 1log26=2log236 1log26=2log262 1log26=22log26 \begin{aligned} &\Rightarrow \dfrac{1}{{{{\log }_2}6}} = \dfrac{2}{{{{\log }_2}\left( {12 \cdot 3} \right)}} \\\ &\Rightarrow \dfrac{1}{{{{\log }_2}6}} = \dfrac{2}{{{{\log }_2}36}} \\\ & \Rightarrow \dfrac{1}{{{{\log }_2}6}} = \dfrac{2}{{{{\log }_2}{6^2}}} \\\ & \Rightarrow \dfrac{1}{{{{\log }_2}6}} = \dfrac{2}{{2{{\log }_2}6}} \\\ \end{aligned}
Here, we will cancel out the term 22 from the numerator and denominator of the right side of the obtained expression.
1log26=1log26\Rightarrow \dfrac{1}{{{{\log }_2}6}} = \dfrac{1}{{{{\log }_2}6}}
Since, L.H.S.=R.H.S.L.H.S. = R.H.S. Thus, the series is in H.P.
Hence, the right option is option C.

Note: Some rules of algorithmic function used in the solution as,
logmn=1lognm\Rightarrow {\log _m}n = \dfrac{1}{{{{\log }_n}m}}
log(mn)=logm+logn\Rightarrow \log \left( {mn} \right) = \log m + \log n
logmn=nlogm\Rightarrow \log {m^n} = n\log m
For solving this type of problem we should have a good knowledge of all three types of progression.