Solveeit Logo

Question

Question: The term independent of *x* in the expansion of\((1 + x)^{n}\left( 1 + \frac{1}{x} \right)^{n}\) is...

The term independent of x in the expansion of(1+x)n(1+1x)n(1 + x)^{n}\left( 1 + \frac{1}{x} \right)^{n} is

A

C02+2C12+......+(n+1)Cn2C_{0}^{2} + 2C_{1}^{2} + ...... + (n + 1)C_{n}^{2}

B

(C0+C1+......+Cn)2(C_{0} + C_{1} + ...... + C_{n})^{2}

C

C02+C12+......+Cn2C_{0}^{2} + C_{1}^{2} + ...... + C_{n}^{2}

D

None of these

Answer

C02+C12+......+Cn2C_{0}^{2} + C_{1}^{2} + ...... + C_{n}^{2}

Explanation

Solution

We know that,

(1+1x)n=nC0+nC11x1+nC21x2+.....+nCn1xn\left( 1 + \frac{1}{x} \right)^{n} =^{n} ⥂ C_{0} +^{n} ⥂ C_{1}\frac{1}{x^{1}} +^{n} ⥂ C_{2}\frac{1}{x^{2}} + ..... +^{n} ⥂ C_{n}\frac{1}{x^{n}}Obviously, the

term independent of x will be

nC0.nC0+nC1nC1+.....+nCn.nCn=C02+C12+.......+Cn2n ⥂ C_{0}.^{n} ⥂ C_{0} +^{n} ⥂ {C_{1}}^{n} ⥂ C_{1} + ..... +^{n} ⥂ C_{n}.^{n} ⥂ C_{n} = C_{0}^{2} + C_{1}^{2} + ....... + C_{n}^{2}

Trick : Put n=1n = 1 in the expansion of

(1+x)1(1+1x)1=1+x+1x+1=2+x+1x(1 + x)^{1}\left( 1 + \frac{1}{x} \right)^{1} = 1 + x + \frac{1}{x} + 1 = 2 + x + \frac{1}{x}.....(i)

We want coefficient of x0x^{0}. Comparing to equation (i).

Then, we get 2 i.e., independent of x.

Option (3) : C02+C12+.....Cn2C_{0}^{2} + C_{1}^{2} + .....C_{n}^{2}; Put n=1n = 1;

Then 1C02+1C12=1+1=21C_{0}^{2} +^{1} ⥂ C_{1}^{2} = 1 + 1 = 2.