Solveeit Logo

Question

Question: The term independent of 'x' in the expansion of \(\left( \frac{1}{2}x^{1/3} + x^{–1/5} \right)^{8}\)...

The term independent of 'x' in the expansion of (12x1/3+x1/5)8\left( \frac{1}{2}x^{1/3} + x^{–1/5} \right)^{8} will be :

A

5

B

6

C

7

D

8

Answer

7

Explanation

Solution

Let (r + 1) term

Tr + 1 = 8Cr (12)8r\left( \frac { 1 } { 2 } \right) ^ { 8 - \mathrm { r } } x8r3x^{\frac{8 - r}{3}}.xr5x^{\frac{- r}{5}}

for independent of 'x'

8r3\frac{8 - r}{3}r5\frac{r}{5} = 0

Ž 83\frac{8}{3}r3\frac{r}{3}r5\frac{r}{5} = 0

Ž r = 5

so term is = 8C5(12)3\left( \frac{1}{2} \right)^{3}= 7