Solveeit Logo

Question

Question: The term independent of *x* in the expansion of \(\left( \frac{3x^{2}}{2} - \frac{1}{3x} \right)^{9}...

The term independent of x in the expansion of (3x2213x)9\left( \frac{3x^{2}}{2} - \frac{1}{3x} \right)^{9} is

A

7/12

B

7/18

C

– 7/12

D

– 7/16

Answer

7/18

Explanation

Solution

n =9, α=2\alpha = 2, β=1\beta = 1. Then r=9(2)1+2=6r = \frac{9(2)}{1 + 2} = 6.

Hence, T7=9C6(32)3(13)6=9×8×73×2×1.123.33=718T_{7} =^{9} ⥂ C_{6}\left( \frac{3}{2} \right)^{3}\left( - \frac{1}{3} \right)^{6} = \frac{9 \times 8 \times 7}{3 \times 2 \times 1}.\frac{1}{2^{3}.3^{3}} = \frac{7}{18}.