Solveeit Logo

Question

Question: The term independent of 'x' in the expansion of \(\left( \frac { 1 } { 2 } x ^ { 1 / 3 } + x ^ { - 1...

The term independent of 'x' in the expansion of (12x1/3+x1/5)8\left( \frac { 1 } { 2 } x ^ { 1 / 3 } + x ^ { - 1 / 5 } \right) ^ { 8 } will be :

A

5

B

6

C

7

D

8

Answer

7

Explanation

Solution

Let (r + 1) term

Tr + 1 = 8Cr (12)8r\left( \frac { 1 } { 2 } \right) ^ { 8 - \mathrm { r } }.xr5x ^ { \frac { - r } { 5 } }

for independent of 'x'

r5\frac { \mathrm { r } } { 5 } = 0

̃ 83\frac { 8 } { 3 }r3\frac { \mathrm { r } } { 3 }r5\frac { \mathrm { r } } { 5 } = 0

̃ r = 5

so term is = 8C5 (12)3\left( \frac { 1 } { 2 } \right) ^ { 3 } = 7