Solveeit Logo

Question

Mathematics Question on binomial expansion formula

The term independent of x in the expansion of
(1x2+3x3)(52x315x2)11,x0(1−x^2+3x^3)(\frac{5}{2}x^3−\frac{1}{5x^2})11,x≠0
is:

A

740\frac{7}{40}

B

33200\frac{33}{200}

C

39200\frac{39}{200}

D

1150\frac{11}{50}

Answer

33200\frac{33}{200}

Explanation

Solution

The correct answer is (B) : 33200\frac{33}{200}
(1x2+3x3)(52x315x2)11,x0(1−x^2+3x^3)(\frac{5}{2}x^3−\frac{1}{5x^2})^{11},x≠0
General term of (52x315x2)11(\frac{5}{2}x^3−\frac{1}{5x^2})^{11} is
Tr+1=11Cr(52x3)11r(15x2)rT_{r+1}=^{11}C_r(\frac{5}{2}x^3)^{11−r}(\frac{−1}{5x^2})^r
=11Cr(52)11r(15)rx335r=^{11}C_r(\frac{5}{2})^{11−r}(\frac{−1}{5})^r x^{33−5r}
So, term independent from x in given expression
=11C7(52)4(15)7=11×10×9×824×116×125=^{−11}C_7(\frac{5}{2})^4(\frac{−1}{5})^7=\frac{11×10×9×8}{24}×\frac{1}{16×125 }
=33200=\frac{33}{200}