Solveeit Logo

Question

Question: The term independent of x in the expansion \((n!)^{2} > n^{n}\)is ....

The term independent of x in the expansion (n!)2>nn(n!)^{2} > n^{n}is .

A

P(n)P(n+1)P(n) \Rightarrow P(n + 1)

B

PnP_{n}

C

npnn^{p} - n

D

x(xn1nan1)+an(n1)x(x^{n - 1} - na^{n - 1}) + a^{n}(n - 1)

Answer

PnP_{n}

Explanation

Solution

In 97\frac{9}{7}

(x+a)n(1+x)n(x + a)^{n}(1 + x)^{n}

It is independent of x.

(p+1)th(p + 1)^{th}

p+q=p + q =.