Solveeit Logo

Question

Question: The term independent of \(x\) in expansion of \({\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\...

The term independent of xx in expansion of (x+1x23x13+1x1xx12)10{\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}} is:

Explanation

Solution

Here, we will simplify the given expression by applying different algebraic identities. Then, after simplifying it, we will find the general term of the binomial expansion of the given expression. We will then equate the exponential power of xx to 0 to find the term independent of xx Then we will substitute the obtained value in the general term of the binomial theorem to find the required term independent of xx.

Formula Used:
We will use the following formulas:

  1. (a3+b3)=(a+b)(a2+b2ab)\left( {{a^3} + {b^3}} \right) = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)
  2. (a2b2)=(ab)(a+b)\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)
  3. Tr+1=nCranrbr{T_{r + 1}} = {}^n{C_r}{a^{n - r}}{b^r}
  4. am×an=am+n{a^m} \times {a^n} = {a^{m + n}}
  5. nCr=n!r!(nr)!{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}

Complete step by step solution:
Given expression is: (x+1x23x13+1x1xx12)10{\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}}
Now, this can also be written as:
(x+1x23x13+1x1xx12)10=((x13)3+13x23x13+1(x)212xx12)10{\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}} = {\left( {\dfrac{{{{\left( {{x^{\dfrac{1}{3}}}} \right)}^3} + {1^3}}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{{{\left( {\sqrt x } \right)}^2} - {1^2}}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}}
Now, taking out x\sqrt x common from the denominator of the second fraction, we get,
(x+1x23x13+1x1xx12)10=((x13)3+13x23x13+1(x)212x(x1))10\Rightarrow {\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}} = {\left( {\dfrac{{{{\left( {{x^{\dfrac{1}{3}}}} \right)}^3} + {1^3}}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{{{\left( {\sqrt x } \right)}^2} - {1^2}}}{{\sqrt x \left( {\sqrt x - 1} \right)}}} \right)^{10}}
Using the properties (a3+b3)=(a+b)(a2+b2ab)\left( {{a^3} + {b^3}} \right) = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right) and (a2b2)=(ab)(a+b)\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right) in the numerators respectively, we get,
(x+1x23x13+1x1xx12)10=((x13+1)(x23+1x13)x23x13+1(x1)(x+1)x(x1))10\Rightarrow {\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}} = {\left( {\dfrac{{\left( {{x^{\dfrac{1}{3}}} + 1} \right)\left( {{x^{\dfrac{2}{3}}} + 1 - {x^{\dfrac{1}{3}}}} \right)}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}{{\sqrt x \left( {\sqrt x - 1} \right)}}} \right)^{10}}
Cancelling out the same brackets from the numerator and denominator, we get,
(x+1x23x13+1x1xx12)10=((x13+1)(x+1)x)10\Rightarrow {\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}} = {\left( {\left( {{x^{\dfrac{1}{3}}} + 1} \right) - \dfrac{{\left( {\sqrt x + 1} \right)}}{{\sqrt x }}} \right)^{10}}
Splitting the denominator of the second fraction, we get
(x+1x23x13+1x1xx12)10=(x13+1xx1x)10\Rightarrow {\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}} = {\left( {{x^{\dfrac{1}{3}}} + 1 - \dfrac{{\sqrt x }}{{\sqrt x }} - \dfrac{1}{{\sqrt x }}} \right)^{10}}
(x+1x23x13+1x1xx12)10=(x13+111x12)10\Rightarrow {\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}} = {\left( {{x^{\dfrac{1}{3}}} + 1 - 1 - \dfrac{1}{{{x^{\dfrac{1}{2}}}}}} \right)^{10}}
Simplifying the expression, we get
(x+1x23x13+1x1xx12)10=(x13x12)10\Rightarrow {\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}} = {\left( {{x^{\dfrac{1}{3}}} - {x^{ - \dfrac{1}{2}}}} \right)^{10}}
Now we will use the general term of binomial theorem for the given expression (x+1x23x13+1x1xx12)10{\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}}.
Here, substituting n=10n = 10, a=x13a = {x^{\dfrac{1}{3}}} and b=x12b = - {x^{ - \dfrac{1}{2}}} in the formula Tr+1=nCranrbr{T_{r + 1}} = {}^n{C_r}{a^{n - r}}{b^r}, we get,
Tr+1=10Cr(x13)10r(x12)r{T_{r + 1}} = {}^{10}{C_r}{\left( {{x^{\dfrac{1}{3}}}} \right)^{10 - r}}{\left( { - {x^{ - \dfrac{1}{2}}}} \right)^r}
Tr+1=10Cr(1)r(x)10r3(x)r2\Rightarrow {T_{r + 1}} = {}^{10}{C_r}{\left( { - 1} \right)^r}{\left( x \right)^{\dfrac{{10 - r}}{3}}}{\left( x \right)^{ - \dfrac{r}{2}}}
Now, using the identity am×an=am+n{a^m} \times {a^n} = {a^{m + n}}, we get,
Tr+1=10Cr(1)r(x)10r3r2\Rightarrow {T_{r + 1}} = {}^{10}{C_r}{\left( { - 1} \right)^r}{\left( x \right)^{\dfrac{{10 - r}}{3}}}^{ - \dfrac{r}{2}}……………………………………..(1)\left( 1 \right)
Now, for independent of xx, we will equate the exponent of xx to 0.
10r3r2=0\dfrac{{10 - r}}{3} - \dfrac{r}{2} = 0
Taking LCM and solving further, we get
202r3r=0\Rightarrow 20 - 2r - 3r = 0
Adding and subtracting the like terms, we get
5r=20\Rightarrow 5r = 20
Dividing both sides by 5, we get
r=4\Rightarrow r = 4
Hence, substituting r=4r = 4 in equation (1)\left( 1 \right), we get,
T4+1=10C4(1)4(x)104342{T_{4 + 1}} = {}^{10}{C_4}{\left( { - 1} \right)^4}{\left( x \right)^{\dfrac{{10 - 4}}{3}}}^{ - \dfrac{4}{2}}
Simplifying the expression, we get
T5=10C4(x)0=10C4\Rightarrow {T_5} = {}^{10}{C_4}{\left( x \right)^0} = {}^{10}{C_4}
Now, using the formula nCr=n!r!(nr)!{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}, we get,
T5=10C4=10!4!6!=10×9×8×74×3×2\Rightarrow {T_5} = {}^{10}{C_4} = \dfrac{{10!}}{{4!6!}} = \dfrac{{10 \times 9 \times 8 \times 7}}{{4 \times 3 \times 2}}
Simplifying the expression further, we get
T5=210\Rightarrow {T_5} = 210

Therefore, the term independent of xx in expansion of (x+1x23x13+1x1xx12)10{\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}} is 210.
Hence, this is the required answer.

Note:
In algebra, binomial theorem describes the algebraic expansion of the powers of a binomial. Whenever, we are required to find any term independent of xx then, we try to make its exponential power 0. This is because if we have x0{x^0}, then by the formula x0=1{x^0} = 1, our variable xx will get vanished. Thus, we equate the power to 0, to find the value of rr to be substituted in the general term and hence, find the required term which is independent of xx.