Solveeit Logo

Question

Mathematics Question on Binomial theorem

The term independent of xx in expansion of (x+1x2/3x1/3+1x1xx1/2)10\bigg(\frac{x+1}{x^{2/3}-x^{1/3}+1}-\frac{x-1}{x-x^{1/2}}\bigg)^{10} is

A

4

B

120

C

210

D

310

Answer

210

Explanation

Solution

[x+1x2/3x1/3+1(x1)xx1/2]10\bigg[ \frac{x+1}{x^{2/3}-x^{1/3}+1}-\frac{(x-1)}{x-x^{1/2}}\bigg]^{10}
=[(x1/3)3+13x2/3x1/3+1(x)2x(x1)]10\bigg[ \frac{(x^{1/3})^3+1^3}{x^{2/3}-x^{1/3}+1}-\frac{ \\{ (\sqrt x)^2 \\}}{\sqrt x (\sqrt x-1)}\bigg]^{10}
=[(x1/3+1)(x2/3+1x1/3)x2/3x1/3+1(x)21x(x1)]10\bigg[ \frac{(x^{1/3}+1)(x^{2/3}+1-x^{1/3})}{x^{2/3-x^{1/3}+1}}-\frac{ \\{(\sqrt x)^2-1 \\}}{\sqrt x(\sqrt x-1)}\bigg]^{10}
=[(x1/3+1)(x+1)x]10=(x1/3x1/2)10=\bigg[ (x^{1/3}+1)-\frac{(\sqrt x+1)}{\sqrt x}\bigg]^{10} \, \, \, = (x^{1/3}-x^{-1/2})^{10}
\therefore The general term is
Tr+1=10Cr(x1/3)10r(x1/2)r=10Cr(1)rx10r3r2T_{r+1}= \, ^{10}C_r(x^{1/3})^{10-r} (-x^{-1/2})^r = \, {10}C_r(-1) ^r x^{\frac{10-r}{3}-\frac{r}{2}}
For independent of x , put
10r3r2=0202r3r=0\frac{10-r}{3}-\frac{r}{2}=0 \, \, \, \Rightarrow \, \, \, 20-2r-3r=0
20=5r202r3r=0\Rightarrow \, \, \, \, \, \, \, \, \, \, \, \, 20=5r \, \, \Rightarrow \, \, 20-2r-3r=0
T5=10C4=10×9×8×74×3×2×1=210\therefore \, \, T_5= \, ^{10}C_4=\frac{10\times \, 9 \times \, 8 \times 7}{4 \times 3 \times 2 \times 1}=210