Solveeit Logo

Question

Question: The term independent of a in the expansion of \(\left( 1 + \sqrt{a} + \frac{1}{\sqrt{a}–1} \right)^{...

The term independent of a in the expansion of (1+a+1a1)30\left( 1 + \sqrt{a} + \frac{1}{\sqrt{a}–1} \right)^{–30}is –

A

30C20

B

0

C

30C10

D

30C0

Answer

0

Explanation

Solution

(1+a+1a1)30\left( 1 + \sqrt{a} + \frac{1}{\sqrt{a}–1} \right)^{–30}= (aa1)30\left( \frac{a}{\sqrt{a}–1} \right)^{–30}

=(a1a)30\left( \frac{\sqrt{a}–1}{a} \right)^{30}= 1a30\frac{1}{a^{30}} (1a)30(1–\sqrt{a})^{30}

= 1a30\frac{1}{a^{30}}{30C030C1a\sqrt{a} + ....+30C30(a\sqrt{a})30}

There is no term independent of a.