Question
Mathematics Question on Differential equations
The temperature T(t) of a body at time t=0 is 160∘F and it decreases continuously as per the differential equation dtdT=−K(T−80), **where K is a positive constant. If T(15)=120∘F, then T(45) is equal to
A
85∘F
B
95∘F
C
90∘F
D
80∘F
Answer
90∘F
Explanation
Solution
Given:
dtdT=−K(T−80)
Separate variables and integrate:
∫160TT−801dT=−∫0tKdt
This gives:
[ln∣T−80∣]160T=−Kt ln∣T−80∣−ln80=−Kt ln80T−80=−Kt
Exponentiate both sides:
80T−80=e−Kt T=80+80e−Kt
Use the initial condition T(15)=120 to find K
120=80+80e−K⋅15 40=80e−15K 21=e−15K
Take the natural logarithm:
−15K=ln21=−ln2 K=15ln2
Find T(45). Substitute t=45:
T(45)=80+80e−K⋅45 =80+80(e−15K)3 =80+80(21)3 =80+80⋅81 =80+10=90
Thus, the answer is:
90°F