Solveeit Logo

Question

Mathematics Question on Differential equations

The temperature T(t)T(t) of a body at time t=0t = 0 is 160160^\circF and it decreases continuously as per the differential equation dTdt=K(T80),\frac{dT}{dt} = -K(T - 80), **where KK is a positive constant. If T(15)=120T(15) = 120^\circF, then T(45)T(45) is equal to

A

85F85\degree F

B

95F95\degree F

C

90F90\degree F

D

80F80\degree F

Answer

90F90\degree F

Explanation

Solution

Given:

dTdt=K(T80)\frac{dT}{dt} = -K(T - 80)

Separate variables and integrate:

160T1T80dT=0tKdt\int_{160}^{T} \frac{1}{T - 80} dT = - \int_{0}^{t} K \, dt

This gives:

[lnT80]160T=Kt\left[ \ln |T - 80| \right]_{160}^{T} = -Kt lnT80ln80=Kt\ln |T - 80| - \ln 80 = -Kt lnT8080=Kt\ln \frac{T - 80}{80} = -Kt

Exponentiate both sides:

T8080=eKt\frac{T - 80}{80} = e^{-Kt} T=80+80eKtT = 80 + 80e^{-Kt}

Use the initial condition T(15)=120T(15) = 120 to find KK

120=80+80eK15120 = 80 + 80e^{-K \cdot 15} 40=80e15K40 = 80e^{-15K} 12=e15K\frac{1}{2} = e^{-15K}

Take the natural logarithm:

15K=ln12=ln2-15K = \ln \frac{1}{2} = -\ln 2 K=ln215K = \frac{\ln 2}{15}

Find T(45)T(45). Substitute t=45t = 45:

T(45)=80+80eK45T(45) = 80 + 80e^{-K \cdot 45} =80+80(e15K)3= 80 + 80 \left( e^{-15K} \right)^3 =80+80(12)3= 80 + 80 \left( \frac{1}{2} \right)^3 =80+8018= 80 + 80 \cdot \frac{1}{8} =80+10=90= 80 + 10 = 90

Thus, the answer is:

90°F