Solveeit Logo

Question

Physics Question on Kinetic molecular theory of gases

The temperature of the gas consisting of rigid diatomic molecules is T = 300K. Calculate the angular root mean square velocity of a rotating moelcule if its moment of inertia is equal to I=2.1×1039gcm2I = 2 .1 \times 10^{-39} g\,cm^2.

A

6.3×10126.3 \times 10^{12} rad / sec

B

6.8×10126.8 \times 10^{12} rad / sec

C

3.6×10123.6 \times 10^{12} rad / sec

D

3.2×10123.2 \times 10^{12} rad / sec

Answer

6.3×10126.3 \times 10^{12} rad / sec

Explanation

Solution

By formula, if II is the moment of inertia then 1αIω2=12×f×KBT\frac{1}{\alpha} I \omega^{2}=\frac{1}{2} \times f \times K_{B} T where f=f= degree of freedom KB=K_{B}= Bult mann conotant T=T= temperature the root mean square angular velocity, ω2=fKBTI ω=fKBTI\begin{array}{r} \omega^{2}=\frac{f K_{B} T}{I} \\\ \Rightarrow \omega=\sqrt{\frac{f K_{B} T}{I}} \end{array} for diatanic molecule, f=2f=2 w=2×1.3×1023×3002.1×1039=6.3×1012rad/secw=\sqrt{\frac{2 \times 1.3 \times 10^{-23} \times 300}{2.1 \times 10^{-39}}}=6.3 \times 10^{12} rad / sec The angular root mean square velocity is 6.3×1012rad/sec6.3 \times 10^{12} rad / sec