Solveeit Logo

Question

Physics Question on Conductance

The temperature of equal masses of three different liquids A, B and C are 12C12^{\circ}C, 12C12^{\circ}C and 28C28^{\circ}C respectively. The temperature when A and B are mixed is 16C16^{\circ}C and when B and C are mixed is 23C23^{\circ}C. The temperature when A and C are mixed is

A

18.2C18.2^{\circ}C

B

22C22^{\circ}C

C

20.2C20.2^{\circ}C

D

25.2C25.2^{\circ}C

Answer

20.2C20.2^{\circ}C

Explanation

Solution

Heat gain = heat lost
CA(1612)=CB(1916)CACB=34C_{A}\left(16 -12\right) = C_{B}\left(19-16\right) \Rightarrow \frac{C_{A}}{C_{B}} = \frac{3}{4}
and CB(2319)=Cc(2823)CBCC=54C_{B}\left(23-19\right) = C_{c}\left(28-23\right) \Rightarrow \frac{C_{B}}{C_{C}} = \frac{5}{4}
CACC=1516(i)\Rightarrow \frac{C_{A}}{C_{C}} = \frac{15}{16}\quad\quad\ldots\left(i\right)
If θ\theta is the temperature when A and C are mixed then,
CA(θ12)=CC(28θ)C_{A}\left(\theta-12\right) = C_{C}\left(28-\theta\right)
CACC=28θθ12(ii)\Rightarrow \frac{C_{A}}{C_{C}} = \frac{28-\theta}{\theta-12}\quad \quad \ldots \left(ii\right)
On solving equations (i)\left(i\right) and (ii)θ=20.2C\left(ii\right) \theta=20.2^{\circ}C