Solveeit Logo

Question

Question: The temperature of a liquid falls from 365 K to 359 K in 3 minutes. The time during which temperatur...

The temperature of a liquid falls from 365 K to 359 K in 3 minutes. The time during which temperature of this liquid falls from 342 K to 338 K is [Let the room temperature be 296 K]

A

6 min

B

4 min

C

3 min

D

2 min

Answer

3 min

Explanation

Solution

Using Newton’s law of cooling, the rate of temperature change is given by

dTdt=K(TTroom)\frac{dT}{dt} = -K\,(T-T_{\text{room}})

For a small temperature drop ΔT over a short interval, we approximate

ΔTK(TavgTroom)Δt.\Delta T \approx K\,(T_{\text{avg}}-T_{\text{room}})\,\Delta t.

Interval 1:

  • Temperature drops from 365 K to 359 K: ΔT1=365359=6K.\Delta T_1 = 365 - 359 = 6\,K.
  • Time: Δt1=3min.\Delta t_1 = 3\,\text{min}.
  • Average temperature: Tavg1=365+3592=362K.T_{\text{avg1}} = \frac{365+359}{2} = 362\,K.
  • Thus, 6=K(362296)(3)6=3K(66).6 = K\,(362-296)\,(3) \quad \Rightarrow \quad 6 = 3K\,(66). Solving, K=6198=133min1.K = \frac{6}{198} = \frac{1}{33}\, \text{min}^{-1}.

Interval 2:

  • Temperature drops from 342 K to 338 K: ΔT2=342338=4K.\Delta T_2 = 342 - 338 = 4\,K.
  • Average temperature: Tavg2=342+3382=340K.T_{\text{avg2}} = \frac{342+338}{2} = 340\,K.
  • Let the time needed be tt. Then, 4=K(340296)t=133×44t.4 = K\,(340-296)\,t = \frac{1}{33}\times 44 \, t. Simplify: 4433t=4143t=4.\frac{44}{33}\,t = \frac{4}{1} \quad \Rightarrow \quad \frac{4}{3}\,t = 4. Therefore, t=4×34=3min.t = 4 \times \frac{3}{4} = 3\, \text{min}.