Solveeit Logo

Question

Physics Question on The Kinetic Theory of Gases

The temperature of a gas having 2.0×10252.0 \times 10^{25} molecules per cubic meter at 1.38 atm (Given, k=1.38×1023JK1k = 1.38 \times 10^{-23} \, \text{JK}^{-1}) is:

A

500 K

B

200 K

C

100 K

D

300 K

Answer

500 K

Explanation

Solution

We use the ideal gas law in terms of the Boltzmann constant:

PV=NkTPV = NkT

Where:
- P=1.38atm=1.38×1.01×105PaP = 1.38 \, \text{atm} = 1.38 \times 1.01 \times 10^5 \, \text{Pa},
- N=2.0×1025N = 2.0 \times 10^{25} (total number of molecules),
- k=1.38×1023J K1k = 1.38 \times 10^{-23} \, \text{J K}^{-1}.

Rearranging the formula to solve for TT:
T=PVNkT = \frac{PV}{Nk}

Substituting the values:

P=1.38×1.01×105=1.01×105PaP = 1.38 \times 1.01 \times 10^5 = 1.01 \times 10^5 \, \text{Pa}

T=1.01×1052×1025×1.38×1023T = \frac{1.01 \times 10^5}{2 \times 10^{25} \times 1.38 \times 10^{-23}}

Simplifying, we get:

T=1.01×1032500KT = \frac{1.01 \times 10^3}{2} \approx 500 \, \text{K}
Thus, the temperature TT is 500 K.

The Correct Answer is: 500 K