Solveeit Logo

Question

Question: The temperature inside a refrigerator is \({t_2}C\) and the room temperature is \({t_1}C\). The amou...

The temperature inside a refrigerator is t2C{t_2}C and the room temperature is t1C{t_1}C. The amount of heat delivered to the room for each joule of electrical energy consumed ideally will be

A. t1t1t2 B. t1+273t1t2 C. t2+273t1t2 D. t1+t2t1+273  A.{\text{ }}\dfrac{{{t_1}}}{{{t_1} - {t_2}}} \\\ B.{\text{ }}\dfrac{{{t_1} + 273}}{{{t_1} - {t_2}}} \\\ C.{\text{ }}\dfrac{{{t_2} + 273}}{{{t_1} - {t_2}}} \\\ D.{\text{ }}\dfrac{{{t_1} + {t_2}}}{{{t_1} + 273}} \\\
Explanation

Solution

Hint- In order to deal with this question, first we will write the relation between heat and temperature for the refrigerator which is known as coefficient of performance then we will proceed further by converting temperature in Kelvin.
Formula used- (Q1)(Q2)=T1T2,Q1=W+Q2,T(0C)=t+273(K)\dfrac{{\left( {{Q_1}} \right)}}{{\left( {{Q_2}} \right)}} = \dfrac{{{T_1}}}{{{T_2}}},{Q_1} = W + {Q_2},T\left( {^0C} \right) = t + 273\left( K \right)

Complete step-by-step answer:

Given that:
Temperature inside refrigerator =t20C = {t_2}^0C
Room temperature =t10C = {t_1}^0C
For refrigerator coefficient of performance is given as
=Heat given to high temperature(Q1)Heat taken from lower temperature(Q2)=T1T2= \dfrac{{{\text{Heat given to high temperature}}\left( {{Q_1}} \right)}}{{{\text{Heat taken from lower temperature}}\left( {{Q_2}} \right)}} = \dfrac{{{T_1}}}{{{T_2}}}
Now, we will convert temperature from Celsius to Kelvin. So we get
Q1Q2=t1+273t2+273.............(1)\Rightarrow \dfrac{{{Q_1}}}{{{Q_2}}} = \dfrac{{{t_1} + 273}}{{{t_2} + 273}}.............(1)
As we know that room is at higher temperature and acts as a hot reservoir. And electrical energy is the input energy shown as W. So, Q1=W+Q2{Q_1} = W + {Q_2}
Or we have:

Q1W=Q2 Q2=Q1W..........(2)  {Q_1} - W = {Q_2} \\\ \Rightarrow {Q_2} = {Q_1} - W..........(2) \\\

Let us substitute this equation (2) in equation (1) to get the relation:
Q1Q2=t1+273t2+273 Q1Q1W=t1+273t2+273  \because \dfrac{{{Q_1}}}{{{Q_2}}} = \dfrac{{{t_1} + 273}}{{{t_2} + 273}} \\\ \Rightarrow \dfrac{{{Q_1}}}{{{Q_1} - W}} = \dfrac{{{t_1} + 273}}{{{t_2} + 273}} \\\
Let us invert the numerator and denominator on both the side:
Q1WQ1=t2+273t1+273 1WQ1=t2+273t1+273 WQ1=1t2+273t1+273 WQ1=(t1+273)(t2+273)t1+273 WQ1=t1t2t1+273  \Rightarrow \dfrac{{{Q_1} - W}}{{{Q_1}}} = \dfrac{{{t_2} + 273}}{{{t_1} + 273}} \\\ \Rightarrow 1 - \dfrac{W}{{{Q_1}}} = \dfrac{{{t_2} + 273}}{{{t_1} + 273}} \\\ \Rightarrow \dfrac{W}{{{Q_1}}} = 1 - \dfrac{{{t_2} + 273}}{{{t_1} + 273}} \\\ \Rightarrow \dfrac{W}{{{Q_1}}} = \dfrac{{\left( {{t_1} + 273} \right) - \left( {{t_2} + 273} \right)}}{{{t_1} + 273}} \\\ \Rightarrow \dfrac{W}{{{Q_1}}} = \dfrac{{{t_1} - {t_2}}}{{{t_1} + 273}} \\\
To find the amount of heat delivered to the room for each joule of electrical energy (W= 1 J).
Let us substitute the value of W=1J in the above equation.
1Q1=t1t2t1+273 Q1=t1+273t1t2  \Rightarrow \dfrac{1}{{{Q_1}}} = \dfrac{{{t_1} - {t_2}}}{{{t_1} + 273}} \\\ \Rightarrow {Q_1} = \dfrac{{{t_1} + 273}}{{{t_1} - {t_2}}} \\\
Hence, the amount of heat delivered to the room for each joule of electrical energy consumed ideally will be t1+273t1t2\dfrac{{{t_1} + 273}}{{{t_1} - {t_2}}}
So, the correct answer is option B.

Note- 1J of heat means that one joule 's energy (thermal energy) was transmitted from the system to the surrounding environment, or vice versa because of the variation in temperature between the system and the surrounding area. In order to solve such problems students must remember the formula or relation between the heat and the temperature as mentioned above. Also students must remember the relation to convert Celsius into Kelvin.