Solveeit Logo

Question

Question: The temperature at which R.M.S velocity of \( S{O_2} \) molecules is half that of helium molecules a...

The temperature at which R.M.S velocity of SO2S{O_2} molecules is half that of helium molecules as 300 K300{\text{ K}} ?
A. 150 K{\text{150 K}}
B. 600 K600{\text{ K}}
C. 900 K900{\text{ K}}
D. 1200 K1200{\text{ K}}

Explanation

Solution

Root means square (R.M.S) velocity of a molecule is calculated by using the formula:
vr.m.s = 3RTM{v_{r.m.s}}{\text{ = }}\sqrt {\dfrac{{3RT}}{M}}
We will find the dependencies on which the root mean square velocity of a molecule depends. Then with the help of the relation between the R.M.S velocity of helium and SO2S{O_2} molecules we can find the temperature at which R.M.S velocity of SO2S{O_2} molecules is half that of helium molecules.
vr.m.s = 3RTM{v_{r.m.s}}{\text{ = }}\sqrt {\dfrac{{3RT}}{M}}
where,
R = R{\text{ = }} Universal Gas constant
T = {\text{T = }} Temperature of gas
M = {\text{M = }} Molecular mass of gas.

Complete Step By Step Answer:
The root mean square (R.M.S) velocity is the square root of the mean of the all velocities of a molecule. It is represented by vr.m.s{v_{r.m.s}} and it can be calculated by using the formula:
 vr.m.s = 3RTM\Rightarrow {\text{ }}{v_{r.m.s}}{\text{ = }}\sqrt {\dfrac{{3RT}}{M}}
We can observe that the only variables on which it depends is temperature of gas and molecular mass of gas molecules. Since all other terms are constant this can be deduced as,
 vr.m.s = TM\Rightarrow {\text{ }}{v_{r.m.s}}{\text{ = }}\sqrt {\dfrac{T}{M}}
For SO2S{O_2} molecules it can be written as,
vr.m.s(SO2) = TSO2MSO2{v_{r.m.s\left( {S{O_2}} \right)}}{\text{ = }}\sqrt {\dfrac{{{T_{S{O_2}}}}}{{{M_{S{O_2}}}}}} ___________ (1){\text{(1)}}
Similarly for Helium molecules it can be written as,
vr.m.s(He2) = THe2MHe2{v_{r.m.s\left( {H{e_2}} \right)}}{\text{ = }}\sqrt {\dfrac{{{T_{H{e_2}}}}}{{{M_{H{e_2}}}}}} _____________ (2){\text{(2)}}
According to question vr.m.s(SO2){v_{r.m.s(S{O_2})}} is half of vr.m.s(He2){v_{r.m.s(H{e_2})}} . It can be represented as:
vr.m.s(SO2)vr.m.s(He2) = 12\dfrac{{{v_{r.m.s(S{O_2})}}}}{{{v_{r.m.s(H{e_2})}}}}{\text{ = }}\dfrac{1}{2} ______________ (3)(3)
Also THe{T_{He}} is given as 300 K300{\text{ K}} and we can calculate molecular mass of both gases as,
Molecular mass of SO2S{O_2} molecules MSO2 = (32 + 16 × 2) = 64 g{M_{S{O_2}}}{\text{ = }}\left( {32{\text{ + 16 }} \times {\text{ 2}}} \right){\text{ = 64 g}}
Molecular mass of He2H{e_2} molecules MHe2 = (2 × 2) = 4 g{M_{H{e_2}}}{\text{ = }}\left( {2{\text{ }} \times {\text{ 2}}} \right){\text{ = 4 g}}
Now dividing equation (1){\text{(1)}} and (2){\text{(2)}} we get the result as,
 vr.m.s(SO2)vr.m.s(He2) = TSO2 × MHe2THe2 × MSO2\Rightarrow {\text{ }}\dfrac{{{v_{r.m.s(S{O_2})}}}}{{{v_{r.m.s(H{e_2})}}}}{\text{ = }}\sqrt {\dfrac{{{T_{S{O_2}}}{\text{ }} \times {\text{ }}{M_{H{e_2}}}}}{{{T_{H{e_2}}}{\text{ }} \times {\text{ }}{M_{S{O_2}}}}}}
On substituting the result from equation (3)(3) , we get the result as
 12 = TSO2 × MHe2THe2 × MSO2\Rightarrow {\text{ }}\dfrac{1}{2}{\text{ = }}\sqrt {\dfrac{{{T_{S{O_2}}}{\text{ }} \times {\text{ }}{M_{H{e_2}}}}}{{{T_{H{e_2}}}{\text{ }} \times {\text{ }}{M_{S{O_2}}}}}}
On substituting the given values we get the result as,
 12 = TSO2 × 4300 × 64\Rightarrow {\text{ }}\dfrac{1}{2}{\text{ = }}\sqrt {\dfrac{{{T_{S{O_2}}}{\text{ }} \times {\text{ 4}}}}{{{\text{300 }} \times {\text{ 64}}}}}
On squaring both sides and rearrange the terms for finding TSO2{T_{S{O_2}}} ,
 TSO2 = 300 × 6416\Rightarrow {\text{ }}{{\text{T}}_{S{O_2}}}{\text{ = }}\dfrac{{300{\text{ }} \times {\text{ 64}}}}{{16}}
 TSO2 = 1200 K\Rightarrow {\text{ }}{{\text{T}}_{S{O_2}}}{\text{ = 1200 K}}
Hence we get the temperature as 1200 K{\text{1200 K}} .
Thus the correct option is D.

Note:
The value of universal gas constant changes only when the units of other parameters change. Thus we can treat it as constant. Helium in molecular form is present as He2H{e_2} not as HeHe . The temperature of the gas should be in kelvin. If it is in degree celsius then do convert it into Kelvin scale.