Solveeit Logo

Question

Question: The tangents to x<sup>2</sup> + y<sup>2</sup> = a<sup>2</sup> having inclinations a and b intersect ...

The tangents to x2 + y2 = a2 having inclinations a and b intersect at P. If cot a + cot b = 0 then the locus of P is –

A

x + y = 0

B

x – y = 0

C

xy = 0

D

None of these

Answer

xy = 0

Explanation

Solution

equation of tangent in slope form

y = mx ± a 1+m2\sqrt { 1 + \mathrm { m } ^ { 2 } }

(k –mh)2 = a2(1 + m2)

m2(h2 – a2) – 2mhk + k2 – a2 = 0

m1 + m2 = 2hkh2a2\frac { 2 h k } { h ^ { 2 } - a ^ { 2 } } , m1m2 =

cot a + cot b = 0

1tanα\frac { 1 } { \tan \alpha } + 1tanβ\frac { 1 } { \tan \beta } = 0 Ž tanα+tanβtanαtanβ\frac { \tan \alpha + \tan \beta } { \tan \alpha \tan \beta } = 0

2hk = 0

Ž xy = 0