Solveeit Logo

Question

Mathematics Question on Tangents and Normals

The tangents to curve y=x32x2+x2y=x^{3}-2x^2+x-2 which are parallel to straight line y=xy = x are

A

xy=2x - y = 2 and x+y=8627x+y=\frac{86}{27}

B

x+y=2x + y = 2 and x+y=8627x+y=\frac{86}{27}

C

x+y=2x + y = 2 and xy=8627x-y=\frac{86}{27}

D

xy=2x - y = 2 and xy=8627x-y=\frac{86}{27}

Answer

xy=2x - y = 2 and xy=8627x-y=\frac{86}{27}

Explanation

Solution

Given,
y=x32x2+x2y=x^{3}-2 x^{2}+x-2
On differentiating both sides w.r.t. xx, we get
dydx=3x24x+1\frac{d y}{d x}=3 x^{2}-4 x+1
and y=xy=x
dydx=1\Rightarrow \frac{d y}{d x} =1
\therefore Slope of tangent will be 3x24x+13 x^{2}-4 x+1
Since, the tangent is parallel to line y=xy=x.
3x24x+1=1\therefore 3 x^{2}-4 x+1=1
3x24x=0\Rightarrow 3 x^{2}-4 x=0
x(3x4)=0\Rightarrow x(3 x-4) =0
x=0,43\Rightarrow x =0, \frac{4}{3}
When x=0x=0, then y=2y=-2
When x=43x=\frac{4}{3}, then y=5027y=\frac{-50}{27}
Now, equation of tangents at point (0,2)(0,-2) is
yy1=dydx(xx1)y-y_{1}= \frac{d y}{d x}\left(x-x_{1}\right)
y+2=1(x0)\Rightarrow y+2=1(x-0)
y+2=x\Rightarrow y+2=x
xy=2\Rightarrow x-y=2 ...(i)
and equation of tangents at point (43,5027)\left(\frac{4}{3},-\frac{50}{27}\right) is
yy1=dydx(xx1)y -y_{1} =\frac{d y}{d x}\left(x-x_{1}\right)
y+5027=x43y +\frac{50}{27} =x-\frac{4}{3}
xy=5027+43\Rightarrow x-y =\frac{50}{27}+\frac{4}{3}
xy=50+3627\Rightarrow x-y =\frac{50+36}{27}
xy=8627\Rightarrow x-y =\frac{86}{27} ...(ii)
Hence, Eqs. (i) and (ii) are required equations of the tangents.