Solveeit Logo

Question

Question: The tangents drawn from a point P to the ellipse make an angle \({{\theta }_{1}}\) and \({{\theta }_...

The tangents drawn from a point P to the ellipse make an angle θ1{{\theta }_{1}} and θ2{{\theta }_{2}} with the major axis; find the locus of P when,
tanθ1tanθ2\tan {{\theta }_{1}}-\tan {{\theta }_{2}} is constant =d=d

Explanation

Solution

First write down the general equation of the ellipse and then the standard equation of tangent for ellipse for the tangent y=mx±a2m2+b2y=mx\pm \sqrt{{{a}^{2}}{{m}^{2}}+{{b}^{2}}} , Let there be a point P(h,k)P\left( h,k \right) that lies on that tangent. Now rewrite the tangent equation for the point P(h,k)P\left( h,k \right) and then evaluate to form a quadratic expression in ‘m’ and proceed further to find the sum of roots, tanθ1+tanθ2\tan {{\theta }_{1}}+\tan {{\theta }_{2}} and then from there find the value of tanθ1tanθ2\tan {{\theta }_{1}}-\tan {{\theta }_{2}}

Complete step by step solution:
Let us write the general equation for an ellipse.
It is given by,
x2a2+y2b2=1\Rightarrow \dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1 considered that (a>b)\left( a>b \right)
Hence, X-axis is the major axis.

As we have the equation of tangent drawn from an external point with given slope is
y=mx±a2m2+b2y=mx\pm \sqrt{{{a}^{2}}{{m}^{2}}+{{b}^{2}}}
The slope of the tangent T1=tanθ1{{T}_{1}}=\tan {{\theta }_{1}}
And the slope of the tangent T2=tanθ2{{T}_{2}}=\tan {{\theta }_{2}}
Let us consider a point P(h,k)P\left( h,k \right) that lies on this tangent.
We can rewrite the tangent equation as,
k=mh±a2m2+b2\Rightarrow k=mh\pm \sqrt{{{a}^{2}}{{m}^{2}}+{{b}^{2}}}
(kmh)2=a2m2+b2\Rightarrow {{\left( k-mh \right)}^{2}}={{a}^{2}}{{m}^{2}}+{{b}^{2}}
k2+m2h22mkh=a2m2+b2\Rightarrow {{k}^{2}}+{{m}^{2}}{{h}^{2}}-2mkh={{a}^{2}}{{m}^{2}}+{{b}^{2}}
m2(h2a2)2mhk+k2b2=0\Rightarrow {{m}^{2}}\left( {{h}^{2}}-{{a}^{2}} \right)-2mhk+{{k}^{2}}-{{b}^{2}}=0
As m is a quadratic function, hence it has two roots or two tangents passing through P are there with slopes tanθ1\tan {{\theta }_{1}} and tanθ2\tan {{\theta }_{2}}
Hence, tanθ1\tan {{\theta }_{1}} and tanθ2\tan {{\theta }_{2}} are roots of quadratic obtained.
The sum of roots for the quadratic equation is given by,
The Sum of roots is given by =ba=\dfrac{-b}{a} in ax2+bx+c=0a{{x}^{2}}+bx+c=0
tanθ1+tanθ2=2hkh2a2\Rightarrow \tan {{\theta }_{1}}+\tan {{\theta }_{2}}=\dfrac{2hk}{{{h}^{2}}-{{a}^{2}}}
And the product of roots is given by,
Product of roots is given by ca\dfrac{c}{a} in ax2+bx+c=0a{{x}^{2}}+bx+c=0
tanθ1tanθ2=k2b2h2a2\Rightarrow \tan {{\theta }_{1}}\tan {{\theta }_{2}}=\dfrac{{{k}^{2}}-{{b}^{2}}}{{{h}^{2}}-{{a}^{2}}}
We also know that,
(a+b)2=(ab)2+4ab\Rightarrow {{\left( a+b \right)}^{2}}={{\left( a-b \right)}^{2}}+4ab
Substituting the slopes, we get,
(tanθ1tanθ2)2=(tanθ1+tanθ2)2+4tanθ1tanθ2\Rightarrow {{\left( \tan {{\theta }_{1}}-\tan {{\theta }_{2}} \right)}^{2}}={{\left( \tan {{\theta }_{1}}+\tan {{\theta }_{2}} \right)}^{2}}+4\tan {{\theta }_{1}}\tan {{\theta }_{2}}
As tanθ1tanθ2=d\tan {{\theta }_{1}}-\tan {{\theta }_{2}}=d (given)
d2=(2hkh2a2)2+4(k2b2h2a2)\Rightarrow {{d}^{2}}={{\left( \dfrac{2hk}{{{h}^{2}}-{{a}^{2}}} \right)}^{2}}+4\left( \dfrac{{{k}^{2}}-{{b}^{2}}}{{{h}^{2}}-{{a}^{2}}} \right)
On further evaluating we get,
d2=4h2k2(h2a2)2+4(k2b2h2a2)\Rightarrow {{d}^{2}}=\dfrac{4{{h}^{2}}{{k}^{2}}}{{{\left( {{h}^{2}}-{{a}^{2}} \right)}^{2}}}+4\left( \dfrac{{{k}^{2}}-{{b}^{2}}}{{{h}^{2}}-{{a}^{2}}} \right)
d2=4h2k24(h2a2)(k2b2)(h2a2)2\Rightarrow {{d}^{2}}=\dfrac{4{{h}^{2}}{{k}^{2}}-4\left( {{h}^{2}}-{{a}^{2}} \right)\left( {{k}^{2}}-{{b}^{2}} \right)}{{{\left( {{h}^{2}}-{{a}^{2}} \right)}^{2}}}
d2(h2a2)2=4h2k2+4(k2b2)(h2a2)\Rightarrow {{d}^{2}}{{\left( {{h}^{2}}-{{a}^{2}} \right)}^{2}}=4{{h}^{2}}{{k}^{2}}+4\left( {{k}^{2}}-{{b}^{2}} \right)\left( {{h}^{2}}-{{a}^{2}} \right)
d2(h2a2)2=4(h2k2h2k2+a2k2+h2b2a2b2)\Rightarrow {{d}^{2}}{{\left( {{h}^{2}}-{{a}^{2}} \right)}^{2}}=4\left( {{h}^{2}}{{k}^{2}}-{{h}^{2}}{{k}^{2}}+{{a}^{2}}{{k}^{2}}+{{h}^{2}}{{b}^{2}}-{{a}^{2}}{{b}^{2}} \right)
On simplifying,
d2(h2a2)2=4(a2k2+h2b2a2b2)\Rightarrow {{d}^{2}}{{\left( {{h}^{2}}-{{a}^{2}} \right)}^{2}}=4\left( {{a}^{2}}{{k}^{2}}+{{h}^{2}}{{b}^{2}}-{{a}^{2}}{{b}^{2}} \right)
Replacing (h, k) by (x, y) to get locus: -
d2(x2a2)2=4(x2a2)(y2b2)+4x2y2\Rightarrow {{d}^{2}}{{\left( {{x}^{2}}-{{a}^{2}} \right)}^{2}}=4\left( {{x}^{2}}-{{a}^{2}} \right)\left( {{y}^{2}}-{{b}^{2}} \right)+4{{x}^{2}}{{y}^{2}}
Now the required locus is d2(x2a2)2=4(x2a2)(y2b2)+4x2y2{{d}^{2}}{{\left( {{x}^{2}}-{{a}^{2}} \right)}^{2}}=4\left( {{x}^{2}}-{{a}^{2}} \right)\left( {{y}^{2}}-{{b}^{2}} \right)+4{{x}^{2}}{{y}^{2}}

Note: Eliminating θ1&θ2{{\theta }_{1}}\And {{\theta }_{2}} by using the given relation tan2θ1+tan2θ1=λ{{\tan }^{2}}{{\theta }_{1}}+{{\tan }^{2}}{{\theta }_{1}}=\lambda with the help of quadratic formed in ‘m’ i.e. y=mx±a2m2+b2y=mx\pm \sqrt{{{a}^{2}}{{m}^{2}}+{{b}^{2}}} or (ymx)2=a2m2+b2{{\left( y-mx \right)}^{2}}={{a}^{2}}{{m}^{2}}+{{b}^{2}} by using properties of roots is the key point of this equation.