Solveeit Logo

Question

Question: The tangents at P, Q, R on the parabola y<sup>2</sup> = 4ax make angles 30<sup>0</sup>, 45<sup>0</su...

The tangents at P, Q, R on the parabola y2 = 4ax make angles 300, 450, 600 with the x-axis. Then their ordinates form a

A

A.P.

B

G.P.

C

H.P.

D

A.G.P

Answer

G.P.

Explanation

Solution

Let P(t1), Q(t2) and R(t3)

The slope of the tangent at P = 1t1=tan30o=13\frac{1}{t_{1}} = \tan 30^{o} = \frac{1}{\sqrt{3}}

⇒ t1 = 3\sqrt{3}

Slope of the tangent at Q = 1t2=tan45o\frac{1}{t_{2}} = \tan 45^{o}

⇒ t2 = 1

Slope of the tangent at R = 1t3=tan60o\frac{1}{t_{3}} = \tan 60^{o}

⇒ t3 = 1/3\sqrt{3}

∴ t1, t2, t3 are in GP

⇒ 2at1, 2at2, 2at3 are in GP

⇒ y1, y2, y3 are in GP