Solveeit Logo

Question

Question: The tangent to the hyperbola \(xy={{c}^{2}}\) at a point P intersects the x-axis at T and the y-axis...

The tangent to the hyperbola xy=c2xy={{c}^{2}} at a point P intersects the x-axis at T and the y-axis at T’. The normal to the curve at the same point intersects the x-axis at N and the y-axis at T’. If Δ\Delta is the area of the triangle PNT and Δ\Delta ' is the area of the triangle PN’T’, then 1Δ+1Δ\dfrac{1}{\Delta }+\dfrac{1}{\Delta '} is
[a] Equal to 1
[b] Depends on the point taken
[c] Depends on c
[d] Equal to 2.

Explanation

Solution

Hint: Assume that the point P on the curve xy=c2xy={{c}^{2}} be P(x,c2x)P\left( x,\dfrac{{{c}^{2}}}{x} \right). Find the slope of the tangent to the curve at Point P by differentiating y with respect to x. Hence find the equation of the tangent and hence find the coordinates of points T and T’. Use the fact that the tangent and normal are perpendicular to each other. Hence find the equation of the normal and hence find the coordinates of the points N and N’. Hence find the areas of the triangle PNT and PN’T’ and hence find the value of 1Δ+1Δ\dfrac{1}{\Delta }+\dfrac{1}{\Delta '}

Complete step by step solution:
Let the P(x1,y1)P\left( {{x}_{1}},{{y}_{1}} \right)be a point on the curve xy=c2xy={{c}^{2}}
Satifying the point on the curve, we have
x1y1=c2 y1=c2x1 \begin{aligned} & {{x}_{1}}{{y}_{1}}={{c}^{2}} \\\ & \Rightarrow {{y}_{1}}=\dfrac{{{c}^{2}}}{{{x}_{1}}} \\\ \end{aligned}
Hence, we have
P(x1,c2x1)P\equiv \left( {{x}_{1}},\dfrac{{{c}^{2}}}{{{x}_{1}}} \right)
Now, we have
xy=c2y=c2xxy={{c}^{2}}\Rightarrow y=\dfrac{{{c}^{2}}}{x}
Differentiating both sides with respect to x to get the slope of the tangent at point (x,y) on the curve, we get
dydx=c2x2\dfrac{dy}{dx}=\dfrac{-{{c}^{2}}}{{{x}^{2}}}
Hence, we have the slope of the tangent at point P =dydxx=x1,y=y1=c2x12={{\left. \dfrac{dy}{dx} \right|}_{x={{x}_{1}},y={{y}_{1}}}}=\dfrac{-{{c}^{2}}}{{{x}_{1}}^{2}}
Hence, we have
Equation of tangent using point slope form of equation of a line is
yc2x1=c2x12(xx1) (a)y-\dfrac{{{c}^{2}}}{{{x}_{1}}}=\dfrac{-{{c}^{2}}}{{{x}_{1}}^{2}}\left( x-{{x }_{1}} \right)\text{ }\left( a \right)
The points T and T’ lie on this line
For point T’, we have x = 0 since the point T’ lies on the y-axis.
Hence if we substitute x = 0 in the equation (a), we will get the y coordinate of point T’.
Substituting x = 0 in the equation (a), we get
yc2x1=c2x12(x1)=c2x1y-\dfrac{{{c}^{2}}}{{{x}_{1}}}=\dfrac{-{{c}^{2}}}{{{x}_{1}}^{2}}\left( -{{x}_{1}} \right)=\dfrac{{{c}^{2}}}{{{x}_{1}}}
Adding c2x1\dfrac{{{c}^{2}}}{{{x}_{1}}}on both sides, we get
y=2c2x1y=\dfrac{2{{c}^{2}}}{{{x}_{1}}}
Hence, we have
T(0,2c2x1)T'\equiv \left( 0,\dfrac{2{{c}^{2}}}{{{x}_{1}}} \right)
For point T, we have y = 0 since the point lies on the x-axis.
Hence if we substitute y = 0 in the equation (a), we will get the x-coordinate of the point T.
Substituting y = 0 in the equation (a), we get
c2x1=c2x12(xx1)-\dfrac{{{c}^{2}}}{{{x}_{1}}}=\dfrac{-{{c}^{2}}}{{{x}_{1}}^{2}}\left( x-{{x}_{1}} \right)
Multiplying both sides by x12c2\dfrac{-x_{1}^{2}}{{{c}^{2}}}, we get
x1=xx1{{x}_{1}}=x-{{x}_{1}}
Adding x1{{x}_{1}} on both sides, we get
x=2x1x=2{{x}_{1}}
Hence, we have
T(2x1,0)T\equiv \left( 2{{x}_{1}},0 \right)
Let m be the slope of the normal.
We know that if the slope of two perpendicular lines are m1{{m}_{1}} and m2{{m}_{2}}, then m1m2=1{{m}_{1}}{{m}_{2}}=-1
Hence, we have
m×(c2x12)=1m\times \left( \dfrac{-{{c}^{2}}}{{{x}_{1}}^{2}} \right)=-1
Multiplying both sides by x12c2\dfrac{-x_{1}^{2}}{{{c}^{2}}}, we get
m=x12c2m=\dfrac{x_{1}^{2}}{{{c}^{2}}}
Hence, we have
yc2x1=x12c2(xx1) (b)y-\dfrac{{{c}^{2}}}{{{x}_{1}}}=\dfrac{x_{1}^{2}}{{{c}^{2}}}\left( x-{{x}_{1}} \right)\text{ }\left( b \right)
The points N and N’ lie on this line.
For point N’, we have x = 0, since the point lies on the y-axis.
Hence if we substitute x = 0 in equation b, we will get the y-coordinate of the point N’.
Substituting x = 0 in equation (b), we get
yc2x1=x12c2(x1) y=c2x1x13c2=c4x14c2x1 \begin{aligned} & y-\dfrac{{{c}^{2}}}{{{x}_{1}}}=\dfrac{x_{1}^{2}}{{{c}^{2}}}\left( -{{x}_{1}} \right) \\\ & \Rightarrow y=\dfrac{{{c}^{2}}}{{{x}_{1}}}-\dfrac{x_{1}^{3}}{{{c}^{2}}}=\dfrac{{{c}^{4}}-x_{1}^{4}}{{{c}^{2}}{{x}_{1}}} \\\ \end{aligned}
Hence, we have
N(0,c4x14c2x1)N'\equiv \left( 0,\dfrac{{{c}^{4}}-x_{1}^{4}}{{{c}^{2}}{{x}_{1}}} \right)
For point N, we have y = 0, since the point lies on the x-axis.
Hence if we substitute y = 0 in equation (b), we will get the x-coordinate of the point N.
Substituting y = 0 in equation (b), we get
c2x1=x12c2(xx1) x=x1c4x13=x14c4x13 \begin{aligned} & -\dfrac{{{c}^{2}}}{{{x}_{1}}}=\dfrac{x_{1}^{2}}{{{c}^{2}}}\left( x-{{x}_{1}} \right) \\\ & \Rightarrow x={{x}_{1}}-\dfrac{{{c}^{4}}}{x_{1}^{3}}=\dfrac{x_{1}^{4}-{{c}^{4}}}{x_{1}^{3}} \\\ \end{aligned}
Hence, we have
N(x14c4x13,0)N\equiv \left( \dfrac{x_{1}^{4}-{{c}^{4}}}{x_{1}^{3}},0 \right)
Now, we know that the area of the triangle formed by the points A(x1,y1),B(x2,y2)A\left( {{x}_{1}},{{y}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}} \right) and C(x3,y3)C\left( {{x}_{3}},{{y}_{3}} \right) is given by
A=12x2x1y2y1 x3x1y3y1 A=\dfrac{1}{2}\left| \begin{matrix} {{x}_{2}}-{{x}_{1}} & {{y}_{2}}-{{y}_{1}} \\\ {{x}_{3}}-{{x}_{1}} & {{y}_{3}}-{{y}_{1}} \\\ \end{matrix} \right|
For triangle PNT, we have
(x1,y1)=(x1,y1),(x2,y2)=(2x1,0),(x3,y3)=(x14c4x13,0)\left( {{x}_{1}},{{y}_{1}} \right)=\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right)=\left( 2{{x}_{1}},0 \right),\left( {{x}_{3}},{{y}_{3}} \right)=\left( \dfrac{x_{1}^{4}-{{c}^{4}}}{x_{1}^{3}},0 \right)
Hence, we have
Δ=122x1x10y1 x14c4x13x10y1 =12x1y1 c4x13y1  =12x1y1+c4x13y1=12c2+c6x14=c22x14(x14+c4) \begin{aligned} & \Delta =\dfrac{1}{2}\left| \begin{matrix} 2{{x}_{1}}-{{x}_{1}} & 0-{{y}_{1}} \\\ \dfrac{x_{1}^{4}-{{c}^{4}}}{x_{1}^{3}}-{{x}_{1}} & 0-{{y}_{1}} \\\ \end{matrix} \right|=\dfrac{1}{2}\left| \begin{matrix} {{x}_{1}} & -{{y}_{1}} \\\ \dfrac{-{{c}^{4}}}{x_{1}^{3}} & -{{y}_{1}} \\\ \end{matrix} \right| \\\ & =\dfrac{1}{2}\left| {{x}_{1}}{{y}_{1}}+\dfrac{{{c}^{4}}}{x_{1}^{3}}{{y}_{1}} \right|=\dfrac{1}{2}\left| {{c}^{2}}+\dfrac{{{c}^{6}}}{x_{1}^{4}} \right|=\dfrac{{{c}^{2}}}{2x_{1}^{4}}\left( x_{1}^{4}+{{c}^{4}} \right) \\\ \end{aligned}
Similarly for triangle PN’T’, we have
(x1,y1)=(x1,c2x1),(x2,y2)=(0,2c2x1),(x3,y3)=(0,c4x14c2x1)\left( {{x}_{1}},{{y}_{1}} \right)=\left( {{x}_{1}},\dfrac{{{c}^{2}}}{{{x}_{1}}} \right),\left( {{x}_{2}},{{y}_{2}} \right)=\left( 0,\dfrac{2{{c}^{2}}}{{{x}_{1}}} \right),\left( {{x}_{3}},{{y}_{3}} \right)=\left( 0,\dfrac{{{c}^{4}}-x_{1}^{4}}{{{c}^{2}}{{x}_{1}}} \right)
Hence, we haves
Δ=120x12c2x1c2x1 0x1c4x14c2x1c2x1 =12x1c2x1 x1x14c2x1  =12x14c2+c2=12c2(c4+x14) \begin{aligned} & \Delta '=\dfrac{1}{2}\left| \begin{matrix} 0-{{x}_{1}} & \dfrac{2{{c}^{2}}}{{{x}_{1}}}-\dfrac{{{c}^{2}}}{{{x}_{1}}} \\\ 0-{{x}_{1}} & \dfrac{{{c}^{4}}-x_{1}^{4}}{{{c}^{2}}{{x}_{1}}}-\dfrac{{{c}^{2}}}{{{x}_{1}}} \\\ \end{matrix} \right|=\dfrac{1}{2}\left| \begin{matrix} -{{x}_{1}} & \dfrac{{{c}^{2}}}{{{x}_{1}}} \\\ -{{x}_{1}} & \dfrac{-x_{1}^{4}}{{{c}^{2}}{{x}_{1}}} \\\ \end{matrix} \right| \\\ & =\dfrac{1}{2}\left| \dfrac{x_{1}^{4}}{{{c}^{2}}}+{{c}^{2}} \right|=\dfrac{1}{2{{c}^{2}}}\left( {{c}^{4}}+x_{1}^{4} \right) \\\ \end{aligned}
Hence, we have
1Δ+1Δ=2x14c2(x14+c4)+2c2x14+c4=2c2(x14+c4)(x14+c4)=2c2\dfrac{1}{\Delta }+\dfrac{1}{\Delta '}=\dfrac{2x_{1}^{4}}{{{c}^{2}}\left( x_{1}^{4}+{{c}^{4}} \right)}+\dfrac{2{{c}^{2}}}{x_{1}^{4}+{{c}^{4}}}=\dfrac{2}{{{c}^{2}}\left( x_{1}^{4}+{{c}^{4}} \right)}\left( x_{1}^{4}+{{c}^{4}} \right)=\dfrac{2}{{{c}^{2}}}
Hence option [c] is correct.
Note: Alternatively, we can solve the question using the parametric form of the equation of hyperbola xy=c2xy={{c}^{2}} as x=ctx=ct and y=cty=\dfrac{c}{t}, where t is a parameter. This method will make the above calculations easier.