Solveeit Logo

Question

Question: The tangent to the graph of the function y = f(x) at the point with abscissa x = 1 from an angle of ...

The tangent to the graph of the function y = f(x) at the point with abscissa x = 1 from an angle of p/6 and at the point x = 2 an angle of p/3, at the point x = 3 an angle of p/4. The value of 13f(x)f(x)dx+23f"(x)dx\int_{1}^{3}{f'(x)f''(x)dx + \int_{2}^{3}{f"(x)dx}} (f"(x) is supposed to be

continuous) is :

A

43133\frac{4\sqrt{3} - 1}{3\sqrt{3}}

B

3312\frac{3\sqrt{3} - 1}{2}

C

433\frac{4\sqrt{3}}{3}

D

None

Answer

None

Explanation

Solution

f(1) = tan p/6 = 13\frac{1}{\sqrt{3}}

f '(2) = tan p/3 = 3\sqrt{3}

f ' (3) = tan p/4 = 1

None 13f(x)f(x)dx+23f"(x)dx\int_{1}^{3}{f'(x)f''(x)dx + \int_{2}^{3}{f"(x)dx}}

= ((f(x)22)13\left( \frac{(f'(x)^{2}}{2} \right)_{1}^{3}+ (f(x))23\left( f'(x) \right)_{2}^{3}

= 12\frac{1}{2} [f '(3)2 –(f '(1)2] + [f '(3) –f '(2)]

= 12\frac{1}{2} [1–13\frac{1}{3}] + [1–3\sqrt{3}] =13\frac{1}{3}+ 1 – 3\sqrt{3}

= 13\frac{1}{3} [4 – 33\sqrt{3}]