Solveeit Logo

Question

Question: The tangent to the curve $y=x^2e^x$ at $(2,4e^2)$ also passes through the point....

The tangent to the curve y=x2exy=x^2e^x at (2,4e2)(2,4e^2) also passes through the point.

A

(12,0\frac{1}{2},0)

B

(32,0\frac{3}{2},0)

C

(0,1)

D

(52,0\frac{5}{2},0)

Answer

(32,0\frac{3}{2},0)

Explanation

Solution

To find the point through which the tangent to the curve y=x2exy=x^2e^x at (2,4e2)(2,4e^2) also passes, we follow these steps:

  1. Find the derivative of the curve:
    Given the curve y=x2exy = x^2e^x.
    Using the product rule, dydx=ddx(x2)ex+x2ddx(ex)\frac{dy}{dx} = \frac{d}{dx}(x^2)e^x + x^2\frac{d}{dx}(e^x).
    dydx=2xex+x2ex\frac{dy}{dx} = 2xe^x + x^2e^x
    Factor out exe^x:
    dydx=ex(2x+x2)\frac{dy}{dx} = e^x(2x + x^2)

  2. Calculate the slope of the tangent at the given point (2,4e2)(2, 4e^2):
    Substitute x=2x=2 into the derivative:
    m=(dydx)x=2=e2(2(2)+22)m = \left(\frac{dy}{dx}\right)_{x=2} = e^2(2(2) + 2^2)
    m=e2(4+4)m = e^2(4 + 4)
    m=8e2m = 8e^2

  3. Determine the equation of the tangent line:
    The equation of a line passing through a point (x1,y1)(x_1, y_1) with slope mm is given by yy1=m(xx1)y - y_1 = m(x - x_1).
    Here, (x1,y1)=(2,4e2)(x_1, y_1) = (2, 4e^2) and m=8e2m = 8e^2.
    So, the equation of the tangent line is:
    y4e2=8e2(x2)y - 4e^2 = 8e^2(x - 2)
    y4e2=8e2x16e2y - 4e^2 = 8e^2x - 16e^2
    y=8e2x16e2+4e2y = 8e^2x - 16e^2 + 4e^2
    y=8e2x12e2y = 8e^2x - 12e^2

  4. Check which of the given options satisfies the tangent line equation:

    • Option 1: (12,0)(\frac{1}{2},0)
      Substitute x=12x=\frac{1}{2}, y=0y=0:
      0=8e2(12)12e20 = 8e^2(\frac{1}{2}) - 12e^2
      0=4e212e20 = 4e^2 - 12e^2
      0=8e20 = -8e^2 (False)

    • Option 2: (32,0)(\frac{3}{2},0)
      Substitute x=32x=\frac{3}{2}, y=0y=0:
      0=8e2(32)12e20 = 8e^2(\frac{3}{2}) - 12e^2
      0=12e212e20 = 12e^2 - 12e^2
      0=00 = 0 (True)

Since this option satisfies the equation, it is the correct answer.