Solveeit Logo

Question

Question: The tangent to the curve x = a \(\sqrt{\cos 2\theta}\)cos θ, y = a \(\sqrt{\cos 2\theta}\) sin θ at ...

The tangent to the curve x = a cos2θ\sqrt{\cos 2\theta}cos θ, y = a cos2θ\sqrt{\cos 2\theta} sin θ at the point corresponding to θ = π/6 is

A

Parallel to the x-axis

B

Parallel to the y-axis

C

Parallel to line y = x

D

None of these

Answer

Parallel to the x-axis

Explanation

Solution

dxdθ\frac{dx}{d\theta}= –a cos2θ\sqrt{\cos 2\theta}sin θ + acosθsin2θcos2θ\frac{- a\cos\theta\sin 2\theta}{\sqrt{\cos 2\theta}}

= –a (cos2θsinθ+cosθsin2θ)cos2θ\frac{(\cos 2\theta\sin\theta + \cos\theta\sin 2\theta)}{\sqrt{\cos 2\theta}}= asin3θcos2θ\frac{- a\sin 3\theta}{\sqrt{\cos 2\theta}}

dydθ\frac{dy}{d\theta}= a cos2θ\sqrt{\cos 2\theta}cos θ –a sinθsin2θcos2θ\frac{\sin\theta\sin 2\theta}{\sqrt{\cos 2\theta}}= acos3θcos2θ\frac{a\cos 3\theta}{\sqrt{\cos 2\theta}}

Hence dydx\frac{dy}{dx}= – cot 3θ ⇒  dydxθ=π/6\left. \ \frac{dy}{dx} \right|_{\theta = \pi/6}= 0

So, the tangent to the curve at θ = π/6 is parallel to the x- axis