Solveeit Logo

Question

Question: The tangent at the point \(P\left( {{x}_{1}},{{y}_{1}} \right)\)to the parabola\({{y}^{2}}=4ax\)meet...

The tangent at the point P(x1,y1)P\left( {{x}_{1}},{{y}_{1}} \right)to the parabolay2=4ax{{y}^{2}}=4axmeets the parabolay2=4a(x+b){{y}^{2}}=4a\left( x+b \right)at Q and R, the coordinates of the midpoint of QR are
A) (x1a,y1+b)\left( {{x}_{1}}-a,{{y}_{1}}+b \right)
B) (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right)
C) (x1+b,y1+a)\left( {{x}_{1}}+b,{{y}_{1}}+a \right)
D) (x1b,y1b)\left( {{x}_{1}}-b,{{y}_{1}}-b \right)

Explanation

Solution

Here we have to find the midpoint of QR. For that, we will first put the point P(x1,y1)P\left( {{x}_{1}},{{y}_{1}} \right)in the equation of the parabolay2=4ax{{y}^{2}}=4ax. Then we will find the value of y in terms of. The roots of the equation formed will bex2 !!&!! x3.{{x}_{2}}\text{ }\\!\\!\And\\!\\!\text{ }{{x}_{3}}., from there, we will get the value of x coordinate of midpoint of QR. Then we will find the value of x in terms ofx1&y1{{x}_{1}}\And {{y}_{1}}. The roots of the equation formed will bey2 !!&!! y3.{{y}_{2}}\text{ }\\!\\!\And\\!\\!\text{ }{{\text{y}}_{3}}., from there, we will get the value of y coordinate of midpoint of QR.

Complete step by step solution:
It is given that the tangent at the point P(x1,y1)P\left( {{x}_{1}},{{y}_{1}} \right) to the parabola y2=4ax{{y}^{2}}=4axmeets the parabola at R and Q.
Equation of the tangent at the pointP(x1,y1)P\left( {{x}_{1}},{{y}_{1}} \right) to the parabola y2=4ax{{y}^{2}}=4axis given by
yy1=2a(x+x1)y{{y}_{1}}=2a\left( x+{{x}_{1}} \right) ………….(1)\left( 1 \right)
As it is also given that the above line intersects the parabola at Q and R.
Let the coordinate of point Q and point R be (x2,y2)&(x3,y3)\left( {{x}_{2}},{{y}_{2}} \right)\And \left( {{x}_{3}},{{y}_{3}} \right)
Now, we will put the value of y from equation 1 in the equation of parabolay2=4a(x+b){{y}^{2}}=4a\left( x+b \right)
 [2a(x+x1)y1]2= 4a(x+b)~{{\left[ \dfrac{2a\left( x+{{x}_{1}} \right)}{{{y}_{1}}} \right]}^{2}}=\text{ }4a\left( x+b \right)
On simplifying, we get
ax2 + x(2ax1y12) + ax12y12b = 0ax{}^\text{2}\text{ }+\text{ }x\left( 2a{{x}_{1}}-{{y}_{1}}{}^\text{2} \right)\text{ }+\text{ }a{{x}_{1}}{}^\text{2}-{{y}_{1}}{}^\text{2}b\text{ }=\text{ }0
For the above equation, roots are x2 !!&!! x3.{{x}_{2}}\text{ }\\!\\!\And\\!\\!\text{ }{{x}_{3}}.
=> x2+ x3= (y12  2ax1)a{{x}_{2}}+\text{ }{{x}_{3}}=\text{ }\dfrac{({{y}_{1}}{}^\text{2}\text{ }-\text{ }2a{{x}_{1}})}{a} ……………(2)\left( 2 \right)
ButP(x1,y1)P\left( {{x}_{1}},{{y}_{1}} \right) lies on the parabolay2=4ax{{y}^{2}}=4ax, so it will satisfy the equation of parabola.
Therefore,
y12=4ax1{{y}_{1}}^{2}=4a{{x}_{1}}
Now, we will put the value of y12{{y}_{1}}^{2}in equation 2.
x2+ x3=(4ax1 2ax1)a =2ax1a=2x1{{x}_{2}}+\text{ }{{x}_{3}}\text{=}\dfrac{\left( 4a{{x}_{1}}-\text{ }2a{{x}_{1}} \right)}{a}\text{ }=\dfrac{2a{{x}_{1}}}{a}=2{{x}_{1}}
Thus,
x1=x2+ x32{{x}_{1}}=\dfrac{{{x}_{2}}+\text{ }{{x}_{3}}}{2}
Now, we will put the value of x from equation 1 in the equation of parabolay2=4a(x+b){{y}^{2}}=4a\left( x+b \right)
y2=4a(yy12ax1+b){{y}^{2}}=4a\left( \dfrac{y{{y}_{1}}}{2a}-{{x}_{1}}+b \right)
On simplifying, we get
y22yy1+4ax14ab = 0y{}^\text{2}-2\text{y}{{\text{y}}_{1}}+4a{{x}_{1}}-4ab\text{ }=\text{ }0
For the above equation, roots are y2 !!&!! y3.{{y}_{2}}\text{ }\\!\\!\And\\!\\!\text{ }{{\text{y}}_{3}}.
[\begin{aligned}
& {{y}{2}}+\text{ }{{\text{y}}{3}}=\text{ }\dfrac{2{{y}{1}}}{1} \\
& \dfrac{{{y}
{2}}+\text{ }{{\text{y}}{3}}}{2}={{y}{1}} \\
\end{aligned}] ……………(3)\left( 3 \right)
Hence, the coordinates of the midpoint of the chord QR are (x1,y1)\left( {{x}_{1}},{{y}_{1}} \right)

Thus, the correct answer is option B.

Note:
Remember that the point which lies on the given curve or line will satisfy the equation of the same curve or line i.e. the value of coordinates of the point will satisfy the equation of curve or line.
Intersection of a line and a curve means there is a common point which lies both on the line and the curve and satisfies the equation of both curve and line.