Solveeit Logo

Question

Question: The tangent at the point \[\left( {4\cos \phi ,\dfrac{{16}}{{\sqrt {11} }}\sin \phi } \right)\] to t...

The tangent at the point (4cosϕ,1611sinϕ)\left( {4\cos \phi ,\dfrac{{16}}{{\sqrt {11} }}\sin \phi } \right) to the ellipse 16x2+11y2=25616{x^2} + 11{y^2} = 256 is also a tangent to the circle x2+y22x=15{x^2} + {y^2} - 2x = 15. Find the absolute value of ϕ\phi in degrees.

Explanation

Solution

Here we will first find the equation of the tangent. Then we will find the distance of the tangent from the centre of the circle and equate it with the radius of the circle. Further, we will find the value of cosϕ\cos \phi in this process and hence, the value of ϕ\phi .

Formulas used:
We will use the following formulas:
The tangent to an ellipse with equation x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1{\rm{ }} at the point (x1,y1)\left( {{x_1},{y_1}} \right) is given by xx1a2+yy1b2=1\dfrac{{x{x_1}}}{{{a^2}}} + \dfrac{{y{y_1}}}{{{b^2}}} = 1.
The distance of a point (x1,y1)\left( {{x_1},{y_1}} \right) from a line ax+by+c=0ax + by + c = 0 is given by d=ax1+by1+ca2+b2d = \dfrac{{\left| {a{x_1} + b{y_1} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}.

Complete step by step solution:

We will write the equation of the ellipse in standard form, x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1{\rm{ }}. We will divide both sides of the equation of ellipse by 256. Therefore, we get
16x2256+11y2256=256256 x216+y2256/11=1\begin{array}{l} \Rightarrow \dfrac{{16{x^2}}}{{256}} + \dfrac{{11{y^2}}}{{256}} = \dfrac{{256}}{{256}}\\\ \Rightarrow \dfrac{{{x^2}}}{{16}} + \dfrac{{{y^2}}}{{256/11}} = 1\end{array}
Comparing the above equation with x2a2+y2b2=1\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1{\rm{ }}, we get
a=4a = 4
b=1611b = \dfrac{{16}}{{\sqrt {11} }}
The standard form of a circle with centre (h,k)\left( {h,k} \right) and radius rr is given by (xh)2+(yk)2=r2{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2}.
We will convert the equation of the circle given in the question to standard form. We will add and subtract 1 on the left-hand side of the equation and rearrange the terms, So, we get
x2+y22x+11=15 x22x+1+y21=15\begin{array}{l} \Rightarrow {x^2} + {y^2} - 2x + 1 - 1 = 15\\\ \Rightarrow {x^2} - 2x + 1 + {y^2} - 1 = 15\end{array}
Simplifying the expression, we get
(x1)2+y2=16\Rightarrow {\left( {x - 1} \right)^2} + {y^2} = 16
Rewriting the above equation in standard form, we get
(x1)2+(y0)2=42\Rightarrow {\left( {x - 1} \right)^2} + {\left( {y - 0} \right)^2} = {4^2}……………………(1)\left( 1 \right)
We will compare the above equation with (xh)2+(yk)2=r2{\left( {x - h} \right)^2} + {\left( {y - k} \right)^2} = {r^2} and find the centre and radius of the circle. So,
(h,k)=(1,0)=˚4\begin{array}{l}\left( {h,k} \right) = \left( {1,0} \right)\\\r = 4\end{array}
We will find the equation of the tangent to the ellipse at point (4cosϕ,1611sinϕ)\left( {4\cos \phi ,\dfrac{{16}}{{\sqrt {11} }}\sin \phi } \right) by substituting 4cosϕ4\cos \phi for x1{x_1}, 1611sinϕ\dfrac{{16}}{{\sqrt {11} }}\sin \phi for y1{y_1}, 4 for aa and 1611\dfrac{{16}}{{\sqrt {11} }} for bb in the formula xx1a2+yy1b2=1\dfrac{{x{x_1}}}{{{a^2}}} + \dfrac{{y{y_1}}}{{{b^2}}} = 1. So, we get
x164cosϕ+y11/2561611sinϕ=1 x4cosϕ+1116ysinϕ=1\begin{array}{l} \Rightarrow \dfrac{x}{{16}} \cdot 4\cos \phi + \dfrac{y}{{11/256}}\dfrac{{16}}{{\sqrt {11} }}\sin \phi = 1\\\ \Rightarrow \dfrac{x}{4}\cos \phi + \dfrac{{\sqrt {11} }}{{16}}y\sin \phi = 1\end{array}
Simplifying the above equation, we get
4xcosϕ+11ysinϕ=16\Rightarrow 4x\cos \phi + \sqrt {11} y\sin \phi = 16……………………………..(2)\left( 2 \right)
The above line is also a tangent to the circle x2+y22x=15{x^2} + {y^2} - 2x = 15.
We know that the distance between the centre of a circle and the point of contact of a tangent is the same as the length of the radius of the circle. We will use this property; we will substitute 4 for dd, 4cosϕ4\cos \phi for aa ,11sinϕ\sqrt {11} \sin \phi for bb, 1 - 1 for cc, 1 for x1{x_1} and 0 for y1{y_1} in the formula d=ax1+by1+ca2+b2d = \dfrac{{\left| {a{x_1} + b{y_1} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}.
Therefore we get
4=4cosϕ1616cos2ϕ+11sin2ϕ\Rightarrow 4 = \dfrac{{\left| {4\cos \phi - 16} \right|}}{{\sqrt {16{{\cos }^2}\phi + 11{{\sin }^2}\phi } }}
On cross multiplication, we get
16cos2ϕ+11sin2ϕ=(cosϕ4)2 16cos2ϕ+11sin2ϕ=cos2ϕ+168cosϕ\begin{array}{l} \Rightarrow 16{\cos ^2}\phi + 11{\sin ^2}\phi = {\left( {\cos \phi - 4} \right)^2}\\\ \Rightarrow 16{\cos ^2}\phi + 11{\sin ^2}\phi = {\cos ^2}\phi + 16 - 8\cos \phi \end{array}
Adding and subtracting the like terms, we get
15cos2ϕ+11(1cos2ϕ)+8cosϕ16=0 4cos2ϕ+8cosϕ5=0\begin{array}{l} \Rightarrow 15{\cos ^2}\phi + 11\left( {1 - {{\cos }^2}\phi } \right) + 8\cos \phi - 16 = 0\\\ \Rightarrow 4{\cos ^2}\phi + 8\cos \phi - 5 = 0\end{array}
Now factoring the above equation, we get
(2cosϕ+5)(2cosϕ1)=0\Rightarrow \left( {2\cos \phi + 5} \right)\left( {2\cos \phi - 1} \right) = 0
Using zero product property, we get
(2cosϕ+5)=0 cosϕ=52\begin{array}{l} \Rightarrow \left( {2\cos \phi + 5} \right) = 0\\\ \Rightarrow \cos \phi = - \dfrac{5}{2}\end{array}
or
(2cosϕ1)=0 cosϕ=12\begin{array}{l} \Rightarrow \left( {2\cos \phi - 1} \right) = 0\\\ \Rightarrow \cos \phi = \dfrac{1}{2}\end{array}
cosϕ\cos \phi cannot be 52 - \dfrac{5}{2} as the minimum value of the function is 1 - 1. So cosϕ\cos \phi will be 12\dfrac{1}{2}.
We know that cos60=12\cos 60^\circ = \dfrac{1}{2}.

therefore, the absolute value of ϕ\phi is 60 degrees.

Note:
As cosϕ=12\cos \phi = \dfrac{1}{2}, ϕ\phi can be both 6060^\circ or 60- 60^\circ, so there will be 2 tangents that are common to the circle and the ellipse. One of them will have a positive slope and the other will have a negative slope. The concept of tangents is used to find the instantaneous rate of change of a function.
We have used the zero product property to simplify the equation. Zero product property states that if ab=0a \cdot b = 0, then either a=0a = 0 or b=0b = 0.