Solveeit Logo

Question

Question: The tangent at an extremity (in the first quadrant) of latus rectum of the hyperbola \[\dfrac{{{x^2}...

The tangent at an extremity (in the first quadrant) of latus rectum of the hyperbola x24y25=1\dfrac{{{x^2}}}{4} - \dfrac{{{y^2}}}{5} = 1, meets x - axis and y - axis at A and B respectively. Then (OA)2(OB)2{\left( {OA} \right)^2} - {\left( {OB} \right)^2}, where O is origin equals:
A) 209\dfrac{{ - 20}}{9}
B) 169\dfrac{{16}}{9}
C) 44
D) 43\dfrac{4}{3}

Explanation

Solution

Here first we will find the values of a and b by comparing the given equation of hyperbola with its standard equation i.e. x2a2y2b2=1\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1 and then we will find the value of eccentricity which is given by:-
b2=a2(e21){b^2} = {a^2}\left( {{e^2} - 1} \right) now since the extremity of latus rectum is (ae,b2a)\left( {ae,\dfrac{{{b^2}}}{a}} \right) hence we will find the latus rectum and then we will find the equation of tangent passing through the latus rectum and then we will find the points A and B by putting x = 0 and y = 0 in the equation of tangent and then find their distance from origin and the compute the required value.

Complete step-by-step answer:

The standard equation of hyperbola is given by:-
x2a2y2b2=1\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1
Comparing the given equation of hyperbola with standard equation we get:-
a2=4{a^2} = 4 &\& b2=5{b^2} = 5……………………..(1)
a=2\Rightarrow a = 2 &\& b=5b = \sqrt 5 ……………………….(2)
Now eccentricity for standard hyperbola is given by:-
b2=a2(e21){b^2} = {a^2}\left( {{e^2} - 1} \right)
Therefore, the eccentricity of the given hyperbola is:-
Putting values from equation 1 we get:-
5=4(e21)5 = 4\left( {{e^2} - 1} \right)
Calculating the value of e we get:-

e2=54+1 e2=5+44 e2=94  {e^2} = \dfrac{5}{4} + 1 \\\ \Rightarrow {e^2} = \dfrac{{5 + 4}}{4} \\\ \Rightarrow {e^2} = \dfrac{9}{4} \\\

Taking square root of both sides we get:-

e2=94 e=32  \sqrt {{e^2}} = \sqrt {\dfrac{9}{4}} \\\ e = \dfrac{3}{2} \\\

Now since the latus rectum in 1st quadrant is given by:-
(ae,b2a)\left( {ae,\dfrac{{{b^2}}}{a}} \right)
Hence putting in the respective values from equation 1 and 2 we get:-
latus rectum(2×32,52){\text{latus rectum}} \equiv \left( {2 \times \dfrac{3}{2},\dfrac{5}{2}} \right)
Simplifying it we get:-
latus rectum(3,52){\text{latus rectum}} \equiv \left( {3,\dfrac{5}{2}} \right)
Now we will find the equation of tangent of the given hyperbola.
The standard equation of tangent of hyperbola passing through (x1,y1)\left( {{x_1},{y_1}} \right) is given by:-
xx1a2yy1b2=1\dfrac{{x{x_1}}}{{{a^2}}} - \dfrac{{y{y_1}}}{{{b^2}}} = 1
Now since it is given that the tangent passes through the latus rectum hence its equation is given by:-
x(3)4y(52)5=1\dfrac{{x\left( 3 \right)}}{4} - \dfrac{{y\left( {\dfrac{5}{2}} \right)}}{5} = 1
Simplifying it further we get:-

x(3)45y2×5=1 3x4y2=1  \dfrac{{x\left( 3 \right)}}{4} - \dfrac{{5y}}{{2 \times 5}} = 1 \\\ \Rightarrow \dfrac{{3x}}{4} - \dfrac{y}{2} = 1 \\\

Now it is given that the tangent meets x axis at A hence y=0
Putting y=0 in above equation we get:-
3x402=1\dfrac{{3x}}{4} - \dfrac{0}{2} = 1
Solving for x we get:-

3x4=1 x=43  \dfrac{{3x}}{4} = 1 \\\ x = \dfrac{4}{3} \\\

Hence point A is A(43,0)A \equiv \left( {\dfrac{4}{3},0} \right)
Now it is given that the tangent meets y axis at B hence x=0
Putting x=0 in above equation we get:-
3(0)4y2=1\dfrac{{3\left( 0 \right)}}{4} - \dfrac{y}{2} = 1
Solving for y we get:-

y2=1 y=2  \dfrac{{ - y}}{2} = 1 \\\ y = - 2 \\\

Hence point B is B(0,2)B \equiv \left( {0, - 2} \right)
Now we will find the distance of Point A from origin (0, 0).
The distance between two points (x1,y1)&(x2,y2)\left( {{x_1},{y_1}} \right)\& \left( {{x_2},{y_2}} \right) is given by:-
d=(x2x1)2+(y2y1)2d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}}
Putting the values for point A and origin we get:-
OA=(430)2+(00)2OA = \sqrt {{{\left( {\dfrac{4}{3} - 0} \right)}^2} + {{\left( {0 - 0} \right)}^2}}
Simplifying it further we get:-

OA=(43)2 OA=43  OA = \sqrt {{{\left( {\dfrac{4}{3}} \right)}^2}} \\\ \Rightarrow OA = \dfrac{4}{3} \\\

Now we will find the distance of Point B from origin (0, 0).
The distance between two points (x1,y1)&(x2,y2)\left( {{x_1},{y_1}} \right)\& \left( {{x_2},{y_2}} \right) is given by:-
d=(x2x1)2+(y2y1)2d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}}
Putting the values for point A and origin we get:-
OB=(00)2+(20)2OB = \sqrt {{{\left( {0 - 0} \right)}^2} + {{\left( { - 2 - 0} \right)}^2}}
Simplifying it further we get:-

OB=(2)2 OB=4 OB=2  OB = \sqrt {{{\left( { - 2} \right)}^2}} \\\ \Rightarrow OB = \sqrt 4 \\\ \Rightarrow OB = 2 \\\

Now we will evaluate the value of (OA)2(OB)2{\left( {OA} \right)^2} - {\left( {OB} \right)^2}
Putting in the respective values we get:-
(OA)2(OB)2=(43)2(2)2{\left( {OA} \right)^2} - {\left( {OB} \right)^2} = {\left( {\dfrac{4}{3}} \right)^2} - {\left( 2 \right)^2}
Simplifying it further we get:-
(OA)2(OB)2=1694{\left( {OA} \right)^2} - {\left( {OB} \right)^2} = \dfrac{{16}}{9} - 4
Taking the LCM we get:-
(OA)2(OB)2=164(9)9{\left( {OA} \right)^2} - {\left( {OB} \right)^2} = \dfrac{{16 - 4\left( 9 \right)}}{9}
Solving it further we get:-

(OA)2(OB)2=16369 (OA)2(OB)2=209  \Rightarrow {\left( {OA} \right)^2} - {\left( {OB} \right)^2} = \dfrac{{16 - 36}}{9} \\\ \Rightarrow {\left( {OA} \right)^2} - {\left( {OB} \right)^2} = \dfrac{{ - 20}}{9} \\\

So, the correct answer is “Option A”.

Note: Students should take a note that the coordinate of latus rectum in first quadrant is given by:-
(ae,b2a)\left( {ae,\dfrac{{{b^2}}}{a}} \right)
Also, all the points and calculations should be evaluated carefully to get the correct answer.