Solveeit Logo

Question

Question: The tangent at a point \(P\) on the hyperbola \(\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} ...

The tangent at a point PP on the hyperbola x2a2y2b2=1\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1 meets one of the directrix in FF. If PFPF subtends an angle θ\theta at the corresponding focus, then θ\theta equals:
A.π4\dfrac{\pi }{4}
B.π2\dfrac{\pi }{2}
C.3π4\dfrac{{3\pi }}{4}
D.π\pi

Explanation

Solution

We will first draw the diagram corresponding to the given condition. We will then find the coordinates of the points mentioned in the question. Then we will find the slope of lines that subtends the required angle. Next, we calculate the product of the slopes to determine the angle.

Complete step-by-step answer:
We are given that the equation of hyperbola is x2a2y2b2=1\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1

We have to find θ\theta
The normal form of any point on the hyperbola is of the form (asecθ,btanθ)\left( {a\sec \theta ,b\tan \theta } \right)
PP is a point on hyperbola through which a tangent passes, then let PP be (asecθ,btanθ)\left( {a\sec \theta ,b\tan \theta } \right)
We know that equation of tangent through a point (x1,y1)\left( {{x_1},{y_1}} \right) passing through a hyperbola is xx1a2yy1b2=1\dfrac{{x{x_1}}}{{{a^2}}} - \dfrac{{y{y_1}}}{{{b^2}}} = 1
Then, equation of tangent passing through point P(asecθ,btanθ)P\left( {a\sec \theta ,b\tan \theta } \right) is
x(asecθ)a2y(btanθ)b2=1\dfrac{{x\left( {a\sec \theta } \right)}}{{{a^2}}} - \dfrac{{y\left( {b\tan \theta } \right)}}{{{b^2}}} = 1
xasecθybtanθ=1\Rightarrow \dfrac{x}{a}\sec \theta - \dfrac{y}{b}\tan \theta = 1 (1)
We are also given that the tangent passes through the directrix.
We know that equation of directrix is x=aex = \dfrac{a}{e}
On substituting the value of x=aex = \dfrac{a}{e} in equation (1)
Hence,
aeasecθybtanθ=1 secθeybtanθ=1  \dfrac{{\dfrac{a}{e}}}{a}\sec \theta - \dfrac{y}{b}\tan \theta = 1 \\\ \Rightarrow \dfrac{{\sec \theta }}{e} - \dfrac{y}{b}\tan \theta = 1 \\\
We will now find the value of yy from the above equation
secθe1=ybtanθ (secθe1)btanθ=y  \dfrac{{\sec \theta }}{e} - 1 = \dfrac{y}{b}\tan \theta \\\ \left( {\dfrac{{\sec \theta }}{e} - 1} \right)\dfrac{b}{{\tan \theta }} = y \\\
Therefore, the coordinates of focus are (ae,0)\left( {ae,0} \right), the coordinates of PP are (asecθ,btanθ)\left( {a\sec \theta ,b\tan \theta } \right) and coordinates of FF are (ae,(secθe1)btanθ)\left( {\dfrac{a}{e},\left( {\dfrac{{\sec \theta }}{e} - 1} \right)\dfrac{b}{{\tan \theta }}} \right)
We will know find the slope of PCPC and slope of FCFC, where slope is given by y2y1x2x1\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}
Then, slope of PCPC is
m1=btanθasecθae m1=bsinθcosθa1cosθae m1=bsinθaaecosθ  {m_1} = \dfrac{{b\tan \theta }}{{a\sec \theta - ae}} \\\ \Rightarrow {m_1} = \dfrac{{b\dfrac{{\sin \theta }}{{\cos \theta }}}}{{a\dfrac{1}{{\cos \theta }} - ae}} \\\ \Rightarrow {m_1} = \dfrac{{b\sin \theta }}{{a - ae\cos \theta }} \\\
The slope of FCFC is
m2=(secθe1)btanθaeae m2=be1cosθsinθcosθbcosθsinθaae2e m2=besinθbcosθsinθaae2e m2=bbecosθ(aae2)sinθ  {m_2} = - \dfrac{{\left( {\dfrac{{\sec \theta }}{e} - 1} \right)\dfrac{b}{{\tan \theta }}}}{{\dfrac{a}{e} - ae}} \\\ \Rightarrow {m_2} = - \dfrac{{\dfrac{b}{e}\dfrac{{\dfrac{1}{{\cos \theta }}}}{{\dfrac{{\sin \theta }}{{\cos \theta }}}} - \dfrac{{b\cos \theta }}{{\sin \theta }}}}{{\dfrac{{a - a{e^2}}}{e}}} \\\ \Rightarrow {m_2} = - \dfrac{{\dfrac{b}{{e\sin \theta }} - \dfrac{{b\cos \theta }}{{\sin \theta }}}}{{\dfrac{{a - a{e^2}}}{e}}} \\\ \Rightarrow {m_2} = - \dfrac{{b - be\cos \theta }}{{\left( {a - a{e^2}} \right)\sin \theta }} \\\
It is also known that b2=a2(1e2){b^2} = {a^2}\left( {1 - {e^2}} \right)
Then,
m2=b(1ecosθ)ab2a2sinθ m2=a(1ecosθ)bsinθ  {m_2} = - \dfrac{{b\left( {1 - e\cos \theta } \right)}}{{a\dfrac{{{b^2}}}{{{a^2}}}\sin \theta }} \\\ \Rightarrow {m_2} = - \dfrac{{a\left( {1 - e\cos \theta } \right)}}{{b\sin \theta }} \\\
Now, we will calculate m1.m2{m_1}.{m_2}
Hence, bsinθaaecosθ(a(1ecosθ)bsinθ)=1\dfrac{{b\sin \theta }}{{a - ae\cos \theta }}\left( { - \dfrac{{a\left( {1 - e\cos \theta } \right)}}{{b\sin \theta }}} \right) = - 1
Since, m1m2=1{m_1}{m_2} = - 1, this implies θ=π2\theta = \dfrac{\pi }{2}
Hence, option B is correct.

Note: Hyperbola is a conic section whose general equation is x2a2y2b2=1\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1. Use the formulas of trigonometry correctly. If the product of slopes of two lines is 1 - 1, then lines are perpendicular to each other. That is, the angle between them is 90{90^ \circ }