Solveeit Logo

Question

Question: The tangent at a point P (acosθ, bsinθ) on the ellipse \(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =...

The tangent at a point P (acosθ, bsinθ) on the ellipse x2a2+y2b2=1\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 meets the auxiliary circle in two points. The chord joining them subtends a right angle at the center. Then the eccentricity of the ellipse is given by

A

(1 + sin2θ)-1/2

B

(1+cos2θ)-1/2

C

(1+sin2θ)

D

(1+cos2θ)1/2

Answer

(1 + sin2θ)-1/2

Explanation

Solution

x2+y2=a2(xacosθ+ybsinθ)x^{2} + y^{2} = a^{2}\left( \frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta \right)The lines given by this equation are at right angles.

∴ coefficient of x2 + coefficient of y2 = 0

1a2(cos2θa2)+1a2(sin2θb2)=01 - a^{2}\left( \frac{\cos^{2}\theta}{a^{2}} \right) + 1 - a^{2}\left( \frac{\sin^{2}\theta}{b^{2}} \right) = 0⇒ sin2θ + 1-

a2b2sin2θ=0\frac{a^{2}}{b^{2}}\sin^{2}\theta = 0

⇒ sin2θ + (1a2b2)+1=0\left( 1 - \frac{a^{2}}{b^{2}} \right) + 1 = 0

⇒ = sin2θ (a2-b2)+b2 = 0

a2e2sin2θ+a2(1e2)=0- a^{2}e^{2}\sin^{2}\theta + a^{2}\left( 1 - e^{2} \right) = 0⇒ 1 = e2 (1+sin2θ)

⇒ e = (1+sin2θ)-1/2.