Question
Question: The tangent at a point P (acosθ, bsinθ) on the ellipse \(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =...
The tangent at a point P (acosθ, bsinθ) on the ellipse a2x2+b2y2=1 meets the auxiliary circle in two points. The chord joining them subtends a right angle at the center. Then the eccentricity of the ellipse is given by
A
(1 + sin2θ)-1/2
B
(1+cos2θ)-1/2
C
(1+sin2θ)
D
(1+cos2θ)1/2
Answer
(1 + sin2θ)-1/2
Explanation
Solution
x2+y2=a2(axcosθ+bysinθ)The lines given by this equation are at right angles.
∴ coefficient of x2 + coefficient of y2 = 0
⇒1−a2(a2cos2θ)+1−a2(b2sin2θ)=0⇒ sin2θ + 1-
b2a2sin2θ=0
⇒ sin2θ + (1−b2a2)+1=0
⇒ = sin2θ (a2-b2)+b2 = 0
⇒ −a2e2sin2θ+a2(1−e2)=0⇒ 1 = e2 (1+sin2θ)
⇒ e = (1+sin2θ)-1/2.