Solveeit Logo

Question

Question: The tangent and the normal lines at the point \(\left( \sqrt{3,}1 \right)\) to the circle \({{x}^{2}...

The tangent and the normal lines at the point (3,1)\left( \sqrt{3,}1 \right) to the circle x2+y2=4{{x}^{2}}+{{y}^{2}}=4 and the x-axis form a triangle. The area of this triangle (in square units) is:
(a) 13\dfrac{1}{3}
(b) 43\dfrac{4}{\sqrt{3}}
(c) 13\dfrac{1}{\sqrt{3}}
(d) 23\dfrac{2}{\sqrt{3}}

Explanation

Solution

The equation of tangent at (3,1)\left( \sqrt{3,}1 \right) to the circle x2+y2=4{{x}^{2}}+{{y}^{2}}=4 is y1x3=[dydx](3,1)\dfrac{y-1}{x-\sqrt{3}}={{\left[ \dfrac{dy}{dx} \right]}_{\left( \sqrt{3},1 \right)}}. The tangent cuts the x-axis, so we can find the intersecting point of tangent and x-axis by putting y=0y=0.

Complete step by step answer:
Let us draw a circle with centre O(0,0)O\left( 0,0 \right).

Here you can see that it is given that the tangent and the normal to the circle intersect at a point(3,1)\left( \sqrt{3,}1 \right). Let us take this point as P(3,1)P\left( \sqrt{3,}1 \right). The tangent will intersect x-axis at point A.
Let us find the equation of the tangent to the circle x2+y2=4{{x}^{2}}+{{y}^{2}}=4. As the tangent meet the circle at pointP(3,1)P\left( \sqrt{3,}1 \right), so first we will find the slope of the tangent at P(3,1)P\left( \sqrt{3,}1 \right).
The slope of the tangent at the point Q(x1,y1)Q\left( {{x}_{1}},{{y}_{1}} \right) is (dydx)(x1,y1){{\left( \dfrac{dy}{dx} \right)}_{\left( {{x}_{1}},{{y}_{1}} \right)}}. Here we have the equation of the circle as x2+y2=4{{x}^{2}}+{{y}^{2}}=4.

If z=xnz={{x}^{n}}, then dzdx=nxn1\dfrac{dz}{dx}=n{{x}^{n-1}}; and if z=nz=n, dzdx=0\dfrac{dz}{dx}=0, where nn is a real number.

Now let us find differentiation of the equation x2+y2=4{{x}^{2}}+{{y}^{2}}=4with respect to xx.
Then, 2x21+2y21dydx=02{{x}^{2-1}}+2{{y}^{2-1}}\dfrac{dy}{dx}=0
2x+2ydydx=0\Rightarrow 2x+2y\dfrac{dy}{dx}=0
2(x+ydydx)=0\Rightarrow 2\left( x+y\dfrac{dy}{dx} \right)=0
(x+ydydx)=0\Rightarrow \left( x+y\dfrac{dy}{dx} \right)=0
ydydx=x\Rightarrow y\dfrac{dy}{dx}=-x
dydx=xy\Rightarrow \dfrac{dy}{dx}=\dfrac{-x}{y}
At point P(3,1)P\left( \sqrt{3,}1 \right), we have x=3x=\sqrt{3} and y=1y=1.
So we have (dydx)(3,1)=31=3{{\left( \dfrac{dy}{dx} \right)}_{\left( \sqrt{3},1 \right)}}=-\dfrac{\sqrt{3}}{1}=-\sqrt{3}.

We know that equation of tangent at point Q(x1,y1)Q\left( {{x}_{1}},{{y}_{1}} \right) is yy1xx1=(dydx)(x1,y1)\dfrac{y-{{y}_{1}}}{x-{{x}_{1}}}={{\left( \dfrac{dy}{dx} \right)}_{\left( {{x}_{1}},{{y}_{1}} \right)}}.
So equation of tangent at point P(3,1)P\left( \sqrt{3,}1 \right) will be
y1x3=3\dfrac{y-1}{x-\sqrt{3}}=-\sqrt{3}
y1=3x+3\Rightarrow y-1=-\sqrt{3}x+3
3x+y=4\Rightarrow \sqrt{3}x+y=4 (1)

As the tangent cuts x-axis at AA, so at AA, y=0y=0. Since the tangent cuts x-axis at AA, therefore we shall put y=0y=0in equation (1). Then,
3x+0=4\Rightarrow \sqrt{3}x+0=4
3x=4\Rightarrow \sqrt{3}x=4
x=43\Rightarrow x=\dfrac{4}{\sqrt{3}}

At point A, x=43x=\dfrac{4}{\sqrt{3}}and y=0y=0, therefore the coordinate of A is A(43,0)A\left( \dfrac{4}{\sqrt{3}},0 \right).
Now let us find OPOPand APAPto find the area of triangle ΔOAP\Delta OAP as OPAPOP\bot AP. Thus OPOP is the height of ΔOAP\Delta OAP and APAP is the base of ΔOAP\Delta OAP.
Now,
OP=(3)2+12=3+1=4=2unitsOP=\sqrt{{{\left( 3 \right)}^{2}}+{{1}^{2}}}=\sqrt{3+1}=\sqrt{4}=2units.

& AP=\sqrt{{{\left( \sqrt{3}-\dfrac{4}{\sqrt{3}} \right)}^{2}}+{{\left( 1-0 \right)}^{2}}}=\sqrt{{{\left( \dfrac{3-4}{\sqrt{3}} \right)}^{2}}+{{1}^{2}}} \\\ & \\\ \end{aligned}$$ $$=\sqrt{{{\left( -\dfrac{1}{\sqrt{3}} \right)}^{2}}+1}$$ $$=\sqrt{\dfrac{1}{3}+1}$$ $$=\sqrt{\dfrac{1+3}{3}}$$ $$=\sqrt{\dfrac{4}{3}}$$ $$=\dfrac{2}{\sqrt{3}}units$$ $\therefore ar\left( \Delta OAP \right)=$ $\dfrac{1}{2}\times $base $\times $ height $=\dfrac{1}{2}\times AP\times OP$ $=\dfrac{1}{2}\times \dfrac{2}{\sqrt{3}}\times 2$ sq. units $=\dfrac{2}{\sqrt{3}}$ sq. units **So, the correct answer is “Option D”.** **Note:** The student must not get confused with tangent and normal. The tangent is a straight line that just touches the curve at a given point. The normal is a straight line which is perpendicular to the tangent. The student might get wrong in recognizing the base and height of triangle$\Delta OAP$. The line which is perpendicular to the tangent is height and the tangent is the base.